Some New Characterizations of Markov-Bernoulli Geometric Distribution Related to Random Sums

  •  M. Gharib    
  •  M. Ramadan    
  •  Kh. A. H. Al-Ajmi    


The Markov-Bernoulli geometric distribution is obtained when a generalization, as a Markov process, of the independent Bernoulli sequence of random variables, is introduced. In this paper, new characterizations of the Markov-Bernoulli geometric distribution, as the distribution of the summation index of randomly truncated non-negative integer valued random variables, are given in terms of moment relations of the sum and summands. The achieved results generalize the corresponding characterizations concerning the usual geometric distribution.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-7032
  • ISSN(Online): 1927-7040
  • Started: 2012
  • Frequency: bimonthly

Journal Metrics

  • h-index (December 2021): 20
  • i10-index (December 2021): 51
  • h5-index (December 2021): N/A
  • h5-median(December 2021): N/A

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )