SIS Epidemic Model Birth-and-Death Markov Chain Approach

  •  A.H. Nzokem    


We are interested in describing the dynamics of the infected size of the SIS Epidemic model using the Birth-Death Markov process. The Susceptible-Infected-Susceptible (SIS) model is defined within a population of constant size M; the size is kept constant by replacing each death with a newborn healthy individual. The life span of each individual in the population is modelled by an exponential distribution with parameter α; the disease spreads within the population is modelled by a Poisson process with a rate λ_I. λ_I=βI(1-I/M)  is similar to the instantaneous rate in the logistic population growth model. The analysis is focused on the disease outbreak, where the reproduction number (R=β/α) is greater than one. As methodology, we use both numerical and analytical approaches. The numerical approach shows that the infected size dynamics converge to a stationary stochastic process. And the analytical results determine the distribution of the stationary stochastic process as a normal distribution with mean (1-1/R)M and Variance M/R when M becomes larger.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-7032
  • ISSN(Online): 1927-7040
  • Started: 2012
  • Frequency: bimonthly

Journal Metrics

  • h-index (December 2020): 18
  • i10-index (December 2020): 36
  • h5-index (December 2020): N/A
  • h5-median(December 2020): N/A

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )