Estimation of the Shape Parameter of a Wear-Out Failure Period for a Three-Parameter Weibull Distribution in a Small Sample

  •  Toru Ogura    
  •  Takatoshi Sugiyama    
  •  Nariaki Sugiura    


We propose a method to estimate a shape parameter for a three-parameter Weibull distribution. The proposed method first derives an unbiased estimator for the shape parameter independent of the location and scale parameters and then estimates the shape parameter using a minimum-variance linear unbiased estimator. Since the proposed method is expressed using a hyperparameter, its optimal hyperparameter is searched using Monte Carlo simulations. The recommended hyperparameter used for estimating the shape parameter depends on the sample size, and this causes no problems since the sample size is known when data is obtained. The proposed method is evaluated using a bias and a root mean squared error, and the results are very promising when the population shape parameter is 2 or more in the Weibull distribution representing the wear-out failure period. A numerical dataset is analyzed to demonstrate the practical use of the proposed method.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-7032
  • ISSN(Online): 1927-7040
  • Started: 2012
  • Frequency: bimonthly

Journal Metrics

  • h-index (December 2021): 20
  • i10-index (December 2021): 51
  • h5-index (December 2021): N/A
  • h5-median(December 2021): N/A

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )