Statistical Insights and Exploratory Data Analysis for E-commerce Sales Data: A Collaborative Filtering and Recency-Based Recommendation System
- Saptarshi Chakma
- Gourab Chakma
- Rishita Chakma
Abstract
Nowadays, recommendation systems are crucial in e-commerce. They deliver timely and relevant product suggestions to users. A well-crafted recommendation system can increase sales and create value for both buyers and sellers. In this research, we examine a large dataset containing sales data, product information, and customer contacts to gather statistical insights. We then introduce a collaborative filtering approach enhanced with data based on recency. Exploratory data analysis (EDA) techniques help identify relationships among variables, using key statistical tools and measures. To better understand consumer behavior, we generate grouped statistics such as purchasing trends by product category and customer age. The results of this research support the development of a collaborative filtering recommendation engine that incorporates recency weighting to improve product suggestions for online retail platforms.
- Full Text:
PDF
- DOI:10.5539/ijbm.v20n5p258
Journal Metrics
Google-based Impact Factor (2023): 0.86
h-index(2023): 152
i10-index(2023): 1168
Index
- Academic Journals Database
- ACNP
- AIDEA list (Italian Academy of Business Administration)
- ANVUR (Italian National Agency for the Evaluation of Universities and Research Institutes)
- Berkeley Library
- CNKI Scholar
- COPAC
- EBSCOhost
- Electronic Journals Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- GETIT@YALE (Yale University Library)
- IBZ Online
- JournalTOCs
- Library and Archives Canada
- LOCKSS
- MIAR
- National Library of Australia
- Norwegian Centre for Research Data (NSD)
- PKP Open Archives Harvester
- Publons
- Qualis/CAPES
- RePEc
- ROAD
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- Universe Digital Library
- UoS Library
- WorldCat
- ZBW-German National Library of Economics
Contact
- Stephen LeeEditorial Assistant
- ijbm@ccsenet.org