A Minimal Pair of Turing Degrees
- Patrizio Cintioli
Abstract
Let $P(A)$ be the following property, where $A$ is any infinite set of natural numbers:\begin{displaymath}
(\forall X)[X\subseteq A\wedge |A-X|=\infty\Rightarrow A\not\le_m X].
\end{displaymath}
Let $({\bf R}, \le)$ be the partial ordering of all the r.e. Turing degrees. We propose the study of the order theoretic properties of the substructure $({\bf S}_{m},\le_{{\bf S}_m})$, where ${\bf S}_{m}=_{\rm dfn}\{{\bf a}\in {\bf R}$: ${\bf a}$ contains an infinite set $A$ such that P(A) is true$\}$, and $\le_{{\bf S}_m}$ is the restriction of $\le$ to ${\bf S}_m$.
In this paper we start by studying the existence of minimal pairs in ${\bf S}_{m}$.
- Full Text: PDF
- DOI:10.5539/jmr.v6n1p76
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org