Time-Dependent and Time-Independent Rheological Characterization of Date Syrup

Ibrahim O. Mohamed, Eihab Hassan

Abstract


The time-dependent and time-independent rheological properties of Barhi date syrup have been investigated. Rheological measurements were performed with a rotational viscometer with parallel plate geometry. The date syrup showed thixotropic behavior and a first order exponential decay model characterized the time-dependent behavior. The rate constant of the structure breakdown was found to be a function of shear rate. The steady shear flow measurements showed that the date syrup is a non-Newtonian material fit the power law model (p <0.001). The Arrhenius model described the effect of temperature on consistency coefficient; the estimated parameters from the Arrhenius equation were used to develop a prediction rheological model for the apparent viscosity. The model accurately predicts the experimental data even when extrapolating beyond parameter estimation temperature range. The time-independent viscosity model was satisfactory for modeling date syrup despite the presence of thixotropic behavior.

Keywords


Rheology, date syrup, Barhi, viscosity, rheological model, activation energy, thixotropy

Full Text:

PDF


DOI: http://dx.doi.org/10.5539/jfr.v5n2p13

Copyright (c) 2016 Journal of Food Research



Journal of Food Research   ISSN 1927-0887 (Print)   ISSN 1927-0895 (Online)  E-mail: jfr@ccsenet.org

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.