Factors Influencing Crystallization of Erythritol in Aqueous Solutions: A Preliminary Study

  •  Oxana Tyapkova    
  •  Stephanie Bader-Mittermaier    
  •  Ute Schweiggert-Weisz    


Erythritol – a new zero caloric sweetener – shows high potential for developing new sugar reduced or sugar free food formulations. Since the crystallization behavior of erythritol was not investigated so far, this study focused on factors influencing erythritol crystallization in aqueous solutions using a simple gravimetric method. The general features of the course of crystallization are a linear increase until a period of 2.5 h of storage followed by a decelerating phase and a phase which represents equilibrium. Additionally, different influencing factors (supersaturation level, storage temperature, storage period and cooling rate) on the crystallization process of erythritol were investigated. It was shown that crystallization value increased with increasing supersaturation level and the progress of crystallization was almost linear from the initial induction period until equilibrium. Therefore, a first-order kinetic for erythritol crystallization was proposed, because only supersaturation level correlated to the erythritol concentration in the solution influenced the course of crystallization. Calculated crystallization rate constants increased considerably with increasing supersaturation levels. Furthermore, at the same supersaturation levels crystallization of erythritol was independent from the storage temperature. Cooling rate influenced only crystal shapes and sizes, but not the crystallization values.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1927-0887
  • Issn(Onlne): 1927-0895
  • Started: 2012
  • Frequency: bimonthly

Journal Metrics

Google-based Impact Factor (2018): 9.22

h-index (August 2018): 20

i10-index (August 2018): 73

h5-index (August 2018): 15  

h5-median(August 2018): 20 

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )