Twin-screw Extrusion Processing of Plant-Based Blends Using Graded Levels of High Protein Fermented Soybean Meal (FSBM)

  •  Parisa Fallahi    
  •  Kurt A. Rosentrater    
  •  K. Muthukumarappan    


Fast-paced growth in global aquaculture has elevated concerns about the high costs of fish farming production and potential water pollution. Thus, finding eco-friendly and more sustainable alternative protein sources for fish diets is of vital importance to the industry. A twin-screw extrusion processing study was performed using three ingredient blends formulated with graded levels of high protein fermented soybean meal (FSBM) (0, 80% and 100% db fishmeal replacement) along with calculated amounts of other ingredients to meet the rainbow trout diets’ requirements. Increasing the FSBM content from 0% to 100% resulted in a substantial increase in brightness, greenness, and yellowness, and a decrease in bulk density, water absorption index, and unit density (UD) values of the extrudates by 12.5%, 73%, 30%, 7.3%, 27.5%, and 10%, respectively. Compared to the control diet (100% fishmeal-based), extrudate moisture contents increased by 15.2% and 22% for the diets containing 80 and 100% FSBM, respectively; although no change was observed by increasing FSBM from 80 to 100%. The highest water solubility index (WSI) was obtained for 80% FSBM; however, further increasing FSBM did not influence the WSI significantly. All extrudates exhibited low water activity and high pellet durability values (less than 0.5 and more than 99.5%, respectively). The most buoyant extrudates were obtained using total FSBM inclusion, with UD and expansion ratio values of nearly 660 kg/m3 and 1.3, respectively. Overall, results indicated that FSBM could be a promising alternative protein in vegetable-based blends.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-0887
  • ISSN(Online): 1927-0895
  • Started: 2012
  • Frequency: bimonthly

Journal Metrics

Google-based Impact Factor (2019): 0.73

h-index (January 2020): 26

i10-index (January 2020): 128

h5-index (January 2020): 15  

h5-median(January 2020): 19

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )