Dirichlet Bayesian Model Averaging for Aggregate Mortgage Default Risk
- Feng Xu
- Jian Hua
- Dazhong Wu
Abstract
Based on Dirichlet process, a Bayesian Model Averaging (BMA) method is proposed in this paper to predict residential mortgage default risk at aggregate level. This ensemble learning algorithm integrates estimates of the default risk provided by two machine learning and one classical forecasting models. Empirical analysis using regional mortgage default data shows that the Dirichlet BMA model performs better than other methods not only in fitting the data given, but also in providing out-of-sample predictions.
- Full Text:
PDF
- DOI:10.5539/ijef.v17n9p14
Journal Metrics
Index
- Academic Journals Database
- ACNP
- ANVUR (Italian National Agency for the Evaluation of Universities and Research Institutes)
- Berkeley Library
- CNKI Scholar
- COPAC
- Copyright Clearance Center
- Directory of Research Journals Indexing
- DTU Library
- EBSCOhost
- EconBiz
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Genamics JournalSeek
- GETIT@YALE (Yale University Library)
- Harvard Library
- Harvard Library E-Journals
- IBZ Online
- IDEAS
- JournalTOCs
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- PKP Open Archives Harvester
- Publons
- RePEc
- ROAD
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Ulrich's
- Universe Digital Library
- UoS Library
- ZBW-German National Library of Economics
- Zeitschriften Daten Bank (ZDB)
Contact
- Michael ZhangEditorial Assistant
- ijef@ccsenet.org