Effect of Copper on Tribological Characteristics and Subsurface Structure of Cast Fe-Cr-C Alloys in Sliding Friction

Viktor Novytskyi, Volodymyr Havryliuk, Volodymyr Lakhnenko


The purpose of this work is to research the tribological characteristics and peculiarities of subsurface structure of friction layers formation of the cast Fe-Cr-C (1.2% C, 17–19% Cr) alloys with the copper content lower (0.4%) or higher (14.0%) than its limit of solubility in the matrix of the alloy. The different contents of copper in cast alloys have a significant influence on the characteristics of the alloy structure in the original state and subsurface friction layers and thus influence the tribological characteristics of these alloys. The alloy with 14.0% copper has minimal wear rate under dry and boundary frictions at the pressures of 1 and 5 MPa. This is achieved through optimizing the parameters of the fine structure of the surface friction layers of alloys and through plating effect of copper transferring from specimen to the counterbody and preventing the friction pair from severe wear.

Full Text:


DOI: https://doi.org/10.5539/jmsr.v2n3p33


  • There are currently no refbacks.

Copyright (c)

Journal of Materials Science Research   ISSN 1927-0585 (Print)   ISSN 1927-0593 (Online)   Email: jmsr@ccsenet.org

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.


images_120. proquest_logo_120