Some More Noiseless Coding Theorem on Generalized R-Norm Entropy

Arun Choudhary, Satish Kumar

Abstract


A parametric mean length is defined as the quantity
$L_{R}^{\beta}=\frac{R}{R-1}\left[1-\frac{\sum_{i=1}^{N}p_{i}^{\beta}D^{-n_{i}\left(\frac{R-1}{R}\right)}}{\sum_{j=1}^{N}p_{j}^{\beta}}\right]$

\noindent where $R>0\left(\ne 1\right),\beta >0,\, p_{i} >0,\, \sum p_{i} =1,\, \, i=1,2,\dots,N.$ This being
the mean length of code words. Lower and upper bounds for $L_{R}^{\beta}$  are derived in terms of R-norm
information measure for the incomplete power distribution.

Full Text: PDF DOI: 10.5539/jmr.v3n1p125

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Journal of Mathematics Research   ISSN 1916-9795 (Print)   ISSN 1916-9809 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

doaj_logo_new_120 proquest_logo_120images_120.