Simulation of the Effect of Oil Volume Fractions in an Oil-Water Flows Along a Circular Pipe: A Finite Element Approach

Ferdusee Akter, Md. Moniruzzaman Bhuyan, Ujjwal Kumar Deb


Two phase flows in pipelines are very common in industries for the oil transportations. The aim of our work is to observe the effect of oil volume fraction in the oil in water two phase flows. The study has been accomplished using a computational model which is based on a Finite Element Method (FEM) named Galerkin approximation. The velocity profiles and volume fractions are performed by numerical simulations and we have considered the COMSOL Multiphysics Software version 4.2a for our simulation. The computational domain is 8m in length and 0.05m in radius. The results show that the velocity of the mixture decreases as the oil volume fraction increases. It should be noted that if we gradually increase the volume fractions of oil, the fluid velocity also changes and the saturated level of the volume fraction is 22.3%.

Full Text:



License URL:

Journal of Mathematics Research   ISSN 1916-9795 (Print)   ISSN 1916-9809 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the '' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.