Regularity and Green's Relations for Generalized Semigroups of Transformations with Invariant Set

  •  Lei Sun    


Let ${\cal T}_X$ be the full transformation semigroup on a set $X$.
For $Y\subseteq X$, the semigroup $S(X,Y) =\{ f\in {\cal T}_X: f(Y)\subseteq Y\}$ is a subsemigroup of ${\cal T}_ X $. Fix an element $\theta\in S(X,Y)$ and for $f,g\in S(X,Y)$, define a new operation $*$ on $S(X,Y)$ by $f* g=f\theta g$ where $f\theta g$ denotes the produce of $g,\theta$ and $f$ in the original sense. Under this operation, the semigroup $S(X,Y)$ forms a semigroup which is called generalized semigroup of $S(X,Y)$ with the sandwich function $\theta$ and denoted by $S(X,Y,*_\theta)$. In this paper we first characterize the regular elements and then describe Green's relations for the semigroup $S(X,Y,*_\theta)$.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1916-9795
  • Issn(Onlne): 1916-9809
  • Started: 2009
  • Frequency: bimonthly

Journal Metrics

Google-based Impact Factor (2018): 3.1

  • h-index (August 2018): 16
  • i10-index (August 2018): 35
  • h5-index (August 2018): 9
  • h5-median (August 2018): 9

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )