Prime Numbers: A Particle in a Box and the Complex Wave Model


  •  Raul Sousa    

Abstract

Euler{'}s formula establishes the relationship between the trigonometric function and the exponential function. In doing so unifies two waves, a real and an imaginary one, that propagate through the Complex number set, establishing relation between integer numbers. A complex wave, if anchored by zero and by a defined integer number \textit{N}, only can assume certain oscillation modes. The first mode of oscillation corresponds always to a \textit{N} prime number and the other modes to its multiples.

\begin{center}
\(\psi (x)=x e^{i\left(\frac{n \pi }{N}x\right)}\)
\end{center}

Under the above described conditions, these waves and their admissible oscillation modes allows for primality testing of integer numbers, the deduction of a new formula $\pi(x)$ for counting prime numbers and the identification of patterns in the prime numbers distribution with computing time gains in the calculations. In this article, four theorems and one rule of factorizing are put forward with consequences for prime number signaling, counting and distribution. Furthermore, it is establish the relationship between this complex wave with a time independent semi-classical harmonic oscillator, in which the spectrum of the allowed energy levels are always only prime numbers. Thus, it is affirmative the reply to the question if the prime numbers distribution is related to the energy levels of a physical system.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1916-9795
  • Issn(Onlne): 1916-9809
  • Started: 2009
  • Frequency: bimonthly

Journal Metrics

Google-based Impact Factor (2018): 3.1

  • h-index (August 2018): 16
  • i10-index (August 2018): 35
  • h5-index (August 2018): 9
  • h5-median (August 2018): 9

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )

Contact