On a High Dimensional Riemann's Removability Theorem

Yukinobu Adachi

Abstract


Let $M$ be a (connected) complex manifold and $E$ be a closed capacity zero set. Let $X$ be a (connected) complex compact Kobayashi hyperbolic space whose universal covering space is Stein and let $f$ be a holomorphic map of $M - E$ to $X$. Then $f$ can be extended holomorphically to a map of $M$ to $X$.

Full Text: PDF DOI: 10.5539/jmr.v6n3p8

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Journal of Mathematics Research   ISSN 1916-9795 (Print)   ISSN 1916-9809 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.