Fractional Strong Matching Preclusion of Split-Star Networks

  •  Ping Han    
  •  Yuzhi Xiao    
  •  Chengfu Ye    
  •  He Li    


The matching preclusion number of graph G is the minimum size of edges whose deletion leaves the resulting graph without a perfect matching or an almost perfect matching. Let F be an edge subset and F′ be a subset of edges and vertices of a graph G. If G − F and G − F′ have no fractional matching preclusion, then F is a fractional matching preclusion (FMP) set, and F ′is a fractional strong matching preclusion (FSMP) set of G. The FMP (FSMP) number of G is the minimum number of FMP (FSMP) set of G. In this paper, we study fractional matching preclusion number and fractional strong matching preclusion number of split-star networks. Moreover, We categorize all the optimal fractional strong matching preclusion sets of split-star networks.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1916-9795
  • Issn(Onlne): 1916-9809
  • Started: 2009
  • Frequency: bimonthly

Journal Metrics

Google-based Impact Factor (2019): 2.75

  • h-index (February 2019): 17
  • i10-index (February 2019): 39
  • h5-index (February 2019): 9
  • h5-median (February 2019): 9

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )