A New Eighth Order Runge-Kutta Family Method


  •  Séka Hippolyte    
  •  Assui Kouassi Richard    

Abstract

In this article, a new family of Runge-Kutta methods of 8^th order for solving ordinary differential equations is discovered and depends on the parameters b_8 and a_10;5. For b8 = 49/180 and a10;5 = 1/9, we find the Cooper-Verner method [1]. We show that the stability region depends only on coefficient a_10;5. We compare the stability regions according to the values of a_10;5 with respect to the stability region of Cooper-Verner.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1916-9795
  • Issn(Onlne): 1916-9809
  • Started: 2009
  • Frequency: bimonthly

Journal Metrics

Google-based Impact Factor (2019): 2.75

  • h-index (February 2019): 17
  • i10-index (February 2019): 39
  • h5-index (February 2019): 9
  • h5-median (February 2019): 9

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )

Contact