Fundamental Frequency of Laminated Composite Thick Spherical Shells


  •  Mohammad Zannon    

Abstract

In this study, we apply third-order shear deformation thick shell theory to analytically derive the frequency characteristics of the free vibration of thick spherical laminated composite shells. The equations of motion are derived using Hamilton’s principle of minimum energy and on the basis of the relationships between forces, moments, and stress displacements in the shell.

We confirm the derived equations and analytical results through the finite element technique by using the well-known software packages MATLAB and ANSYS. We consider the fundamental natural frequencies and the mode shapes of simply supported spherical cross-ply (0, 90), (0, 90, 0), and (0, 90, 90, 0) laminated composite shells. Then, to increase accuracy and decrease calculation efforts, we compare the results obtained through classical theory and first-order shear deformation theory.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1916-9795
  • Issn(Onlne): 1916-9809
  • Started: 2009
  • Frequency: bimonthly

Journal Metrics

Google-based Impact Factor (2018): 3.1

  • h-index (August 2018): 16
  • i10-index (August 2018): 35
  • h5-index (August 2018): 9
  • h5-median (August 2018): 9

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )

Contact