On a Geometric Extension of the Notion of Exchangeability Referring to Random Events

Pierpaolo Angelini, Angela De Sanctis

Abstract


The notion of exchangeability referring to random events is investigated by using a geometric scheme of representation of possible alternatives. When we distribute among them our sensations of probability, we point out the multilinear essence of exchangeability by means of this scheme. Since we observe a natural one-to-one correspondence between multilinear maps and linear maps, we are able to underline that linearity concept is the most meaningful mathematical concept of probability theory. Exchangeability hypothesis is maintained for mixtures of Bernoulli processes in the same way. We are the first in the world to do this kind of work and for this reason we believe that it is inevitable that our references limit themselves only to those pioneering works which do not keep the real and deep meaning of probability concept a secret, unlike the current ones.

Full Text:

PDF


DOI: https://doi.org/10.5539/ijsp.v7n2p50

License URL: http://creativecommons.org/licenses/by/4.0

International Journal of Statistics and Probability   ISSN 1927-7032(Print)   ISSN 1927-7040(Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

--------------------------------------------------------------------------------------------------------------------------------------------