Characterization of the Bayesian Posterior Distribution in Terms of Self-information


  •  Marco Dall'Aglio    
  •  Theodore Hill    

Abstract

It is well known that the classical Bayesian posterior arises naturally as the unique solution of different optimization problems, without the necessity of interpreting data as conditional probabilities and then using Bayes' Theorem. Here it is shown that the Bayesian posterior is also the unique minimax optimizer of the loss of self-information in combining the prior and the likelihood distributions, and is the unique proportional consolidation of the same distributions. These results, direct corollaries of recent results about conflations of probability distributions, further reinforce the use of Bayesian posteriors, and may help partially reconcile some of the differences between classical and Bayesian statistics.


This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1927-7032
  • Issn(Onlne): 1927-7040
  • Started: 2012
  • Frequency: bimonthly

Journal Metrics

Google-based Impact Factor (2018): 2.7

  • h-index (August 2018): 11
  • i10-index (August 2018): 15
  • h5-index (August 2018): 9
  • h5-median(August 2018): 16

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )

Contact