The Human Intelligence vs. Artificial Intelligence: Issues and Challenges in Computer Assisted Language Learning


  •  Mohammed Ali    

Abstract

In this study, the researcher has advocated the importance of human intelligence in language learning since software or any Learning Management System (LMS) cannot be programmed to understand the human context as well as all the linguistic structures contextually. This study examined the extent to which language learning is perilous to machine learning and its programs such as Artificial Intelligence (AI), Pattern Recognition, and Image Analysis used in much assistive learning techniques such as voice detection, face detection and recognition, personalized assistants, besides language learning programs. The researchers argue that language learning is closely associated with human intelligence, human neural networks and no computers or software can claim to replace or replicate those functions of human brain. This study thus posed a challenge to natural language processing (NLP) techniques that claimed having taught a computer how to understand the way humans learn, to understand text without any clue or calculation, to realize the ambiguity in human languages in terms of the juxtaposition between the context and the meaning, and also to automate the language learning process between computers and humans. The study cites evidence of deficiencies in such machine learning software and gadgets to prove that in spite of all technological advancements there remain areas of human brain and human intelligence where a computer or its software cannot enter. These deficiencies highlight the limitations of AI and super intelligence systems of machines to prove that human intelligence would always remain superior.



This work is licensed under a Creative Commons Attribution 4.0 License.