Geochemical Classification and Determination of Maturity Source Weathering in Beach Sands of Eastern San’ in Coast, Tango Peninsula, and Wakasa Bay, Japan


  •  Bah Mamadou Lamine Malick    
  •  Hiroaki Ishiga    

Abstract

Geochemistry of beach sand sediments collected from the Eastern San’in coast (n=17), Tango Peninsula (n=14) and Wakasa Bay (n=7) shorelines were investigated using XRF analyses for major and trace elements to characterize their composition, classification, maturity, provenance, tectonic setting and degree of weathering in source areas. Investigated sands from all sites were very similar showing depletion in all elements except SiO2, K2O and As relative to the UCCN and JUCN, suggesting a moderate geochemical maturation. Beach sand sediments from these locations can be classified as arkose, subarkose and litharenite that are chemically immature and formed under arid/semi-arid conditions with a tendency towards increasing chemical maturity suggesting that they are from multiple sources. The relatively low to moderate values of weathering indices of Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA) and Chemical Index of Weathering (CIW), the beach sands from all sites in the source area have undergone low to moderate degree of chemical weathering. A-CN-K and A-CNK-FM plots, which suggest a granitic source composition, also confirm that the sand samples from these sites have undergone low to moderate degree of chemical weathering in consistent with CIA, PIA and CIW values. A plot of the analyzed beach sands data on the provenance discriminating function F1/F2 showed that most of the investigated beach sand sediments in all locations fall within mafic to intermediate ocean island arc source; similar to the tectonic setting discrimination diagrams based on major elements suggesting a passive margin.


This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-0542
  • ISSN(Online): 1927-0550
  • Started: 2012
  • Frequency: semiannual

Journal Metrics

(The data was calculated based on Google Scholar Citations)

h-index (December 2019): 13

i10-index (December 2019): 21

h5-index (December 2019): 8

h5-median(December 2019): 14

Contact