Analysis of Particle Swarm Optimization Algorithm

  •  Qinghai Bai    


Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. The algorithm is widely used and rapidly developed for its easy implementation and few particles required to be tuned. The main idea of the principle of PSO is presented; the advantages and the shortcomings are summarized. At last this paper presents some kinds of improved versions of PSO and research situation, and the future research issues are also given.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1913-8989
  • Issn(Onlne): 1913-8997
  • Started: 2008
  • Frequency: quarterly

Journal Metrics

(The data was calculated based on Google Scholar Citations)

Google-based Impact Factor (2018): 18.20

h-index (January 2018): 23

i10-index (January 2018): 90

h5-index (January 2018): 11

h5-median(January 2018):17