Setting the Hidden Layer Neuron Number in Feedforward Neural Network for an Image Recognition Problem under Gaussian Noise of Distortion

Vadim Romanuke

Abstract


There is considered an image recognition problem, defined for the single hidden layer perceptron, fed with 5-by-7 monochrome images on its input under Gaussian noise of their distortion. In this neural network the hidden layer neuron number should be set optimally to maximize its productivity. For minimizing traintime duration and recognition error rate both simultaneously there are suggested two ways of solving the corresponding two-objective minimization problem. One of them deals with equilibrium conception, and the other takes Bernoulli criterion for getting the single minimization problem.


Full Text: PDF DOI: 10.5539/cis.v6n2p38

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Computer and Information Science   ISSN 1913-8989 (Print)   ISSN 1913-8997 (Online)
Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.