Cascade-Correlation Algorithm with Trainable Activation Functions

Fanjun Li, Ying Li

Abstract


According to the characteristic that higher order derivatives of some base functions can be expressed by primitive functions and lower order derivatives, cascade-correlation algorithm with tunable activation functions is proposed in this paper. The base functions and its higher order derivatives are used to construct the tunable activation functions in cascade-correlation algorithm. The parallel and series constructing schemes of the activation functions are introduced. The model can simply the neural network architecture, speed up the convergence rate and improve its generalization. The efficiency is demonstrated with the two-spiral classification and Mackay-Glass time series prediction problem.


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Computer and Information Science   ISSN 1913-8989 (Print)   ISSN 1913-8997 (Online)
Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.