A Genetic K-means Clustering Algorithm Based on the Optimized Initial Centers

Min Feng, Zhenyan Wang

Abstract


An optimized initial center of K-means algorithm(PKM) is proposed, which select the k furthest distance data in the high-density area as the initial cluster centers. Experiments show that the algorithm not only has a weak dependence on the initial data, but also has fast convergence and high clustering quality. To obtain effective cluster and accurate cluster, we combine the optimized K-means algorithm(PKM) and genetic algorithm into a hybrid algorithm (PGKM). It can not only improve compactness and separation of the algorithm but also automatically search for the best cluster number k, then cluster after optimizing the k-centers. The optimal cluster is not obtained until terminal conditions are met after continuously iterating. Experiments show that the algorithm has good cluster quality and overall performance.


Full Text: PDF DOI: 10.5539/cis.v4n3p88

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Computer and Information Science   ISSN 1913-8989 (Print)   ISSN 1913-8997 (Online)
Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.