Motor Using Mechanical Vibration of Multiple Bimorph Beams


  •  Hiroyuki Yaguchi    

Abstract

The present paper proposes a non-magnetic motor with a rotor rotated by the mechanical resonance energy of four bimorph cantilever beams excited by an electrostatic force. The use of a flexible material such as silicon rubber enables conversion of translational vibration to rotary movement in one direction. The rotational speed of the proposed motor increases in proportion to the input voltage when two bimorph beams are used, and the maximum rotational speed was found to be 6,804 rpm when the input voltage was set to 24.6 V. Next, the basic characteristics of a prototype motor with four bimorph cantilever beams, including rotational speed, output torque, and efficiency, were determined experimentally. The experimental results revealed that a maximum rotational speed of 6,370 rpm was obtained when the output torque was 19.6 uNm. The proposed motor was also observed to produce an output torque of 63.7 uNm when the rotational speed was 1,491 rpm. The maximum efficiency was 6.2% when the input power was 0.3 W. For the proposed motor, the volume and weight were reduced by approximately 35%, as compared with a motor from a previous study.


This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-0607
  • ISSN(Online): 1927-0615
  • Started: 2011
  • Frequency: semiannual

Journal Metrics

Google-based Impact Factor (2017): 5.43
h-index (January 2018): 8
i10-index (January 2018): 6

Learn More

Contact