Hydrogen Sulfide Corrosion of Carbon and Stainless Steel Alloys in Mixtures of Renewable Fuel Sources under Co-Processing Conditions


  •  Andras Gergely    
  •  Peter Szabo    
  •  Antal Krojer    
  •  Bence Nagy    
  •  Tamas Kristof    

Abstract

Corrosion rates of steel alloys were investigated in gas oil and its mixture with waste cooking oil and animal waste lard over 1, 3, 7 and 21 days under desulfurizing condition. Co-processing conditions were attempted to simulate by batch-reactor experiment at temperatures between 200 and 300oC and pressures between 20 and 90 bar in the presence of 2 volume% hydrogen sulfide. Integral and differential corrosion rates were defined by weight losses. Intense sulfide corrosion of carbon steels was less impacted by the biomass sources. Thinner scales in gas oil was probably due to frequent cohesive failure, whereas thicker layers in biomass mixtures were allowed to form to afford limited physical protection. The high corrosion rate of low alloy steel with temperature over time is related to inefficient protection by the metal sulfide scales. Greater activation energy and enthalpy balance in the formation of activated complex is expected to reflect in thick cohesive scales. Loose layers and the less unfavorable entropy balance in the transition state did not lead to valuable barrier protection. High sulfide corrosion resistance of stainless steels is in chemical in nature markedly impacted by the biomass fuel sources and contributed especially by the acidic species. Corrosion rates increased with temperature by magnitude similar to those of carbon steels, which probably owes to the less unfavorable entropy and free energy balance between the initial and transition states of the reactants.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1913-1844
  • Issn(Onlne): 1913-1852
  • Started: 2007
  • Frequency: monthly

Journal Metrics

(The data was calculated based on Google Scholar Citations)

Google-based Impact Factor (2018): 6.49

h-index (January 2018): 30

i10-index (January 2018): 163

h5-index (January 2018): 19

h5-median(January 2018): 25

Contact