Electronic Structure and Dipole Moment Calculations of the Electronic States of the Molecule ZnS

Abeer Youssef, Ghassan Younes, Mahmoud Korek


In this study, the low lying electronic states and spectroscopy of diatomic molecule ZnS in addition to its dipole moments have been investigated by performing highly correlated ab initio calculations, the Complete Active Space Self Consistent Field (CASSCF) method with Multi Reference Configuration Interaction (MRCI+Q) for an accurate picture for these states. The proposed study includes information about the potential energy curves of the lowest 12 singlet and 9 triplet electronic states of the molecule ZnS, in the representation 2s+1Λ(+/-). Nine of these states have been studied here for the first time. The harmonic frequency we, the internuclear distance re, the electronic energy with respect to the ground state Te, the rotational constant Be, and the permanent dipole moment μ have been calculated, compared and compiled with the available existing data to illustrate the electronic characteristics. The comparison of these values reveals a very good agreement.

Full Text:


DOI: https://doi.org/10.5539/mas.v12n3p132

Copyright (c) 2018 Abeer Youssef, Ghassan Younes, Mahmoud Korek

License URL: http://creativecommons.org/licenses/by/4.0

Modern Applied Science   ISSN 1913-1844 (Print)   ISSN 1913-1852 (Online)  Email: mas@ccsenet.org

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.