Improving the Seismic Behavior of Symmetrical Steel Structures Under Near-Field Earthquake Using a Base Isolation Method Lead Rubber Bearing Isolator


  •  Musa Mazji Till Abadi    
  •  Behnam Adhami    

Abstract

In this study, the function and application of seismic isolation system through lead rubber bearing isolator (LRB) in near-fault earthquakes are compared with fixed-base structures. As a result of their high frequency content, near-fault earthquakes impose huge energy on structures and cause severe damages. One of the appropriate solutions for this issue is the use of LRB which decreases the amount of imposed energy on structures. To improve the function of isolated structures under the near-fault earthquakes, isolators are designed in a way to tolerate the vertical component of earthquakes. To this purpose, we limit the displacements due to the horizontal movements of isolator through Gap spring which acts as a retaining wall and prevent shocks to other buildings. Moreover, this approach decreases the vertical movements of isolators and indirectly improves their behavior. In the current study, three buildings with four, eight, and 12 floors (with and without gap spring) were included. Isolators were manually designed in accordance with AASHTO-LRB regulations and the behaviors of both isolators and buildings are considered non-linear. Then we analyzed and compared the amount of energy, displacement, and acceleration of structure at the center of roof. The results indicated a significant decrease in the results of base shear, the acceleration of roof center, floors drift and energy imposed on the structure in the isolated system in comparison with the fixed-base structure.



This work is licensed under a Creative Commons Attribution 4.0 License.