Aesthetic Curve Design with Linear Gradients of Logarithmic Curvature/Torsion Graphs

R. U. Gobithaasan, Kenjiro T. Miura, L. P. Yee, A. F. Wahab

Abstract


The quality of a curve for industrial design and computer graphics can be interrogated using Logarithmic Curvature Graph (LCG) and Logarithmic Torsion Graph (LTG). A curve is said to be aesthetic if it depicts linear LCG and LTG function. The Log-aesthetic curve (LAC) was developed bearing this notion and it was later extended to a Generalized Log-aesthetic curve (GLAC) using the -shift and -shift approach. This paper reformulates GLAC by representing the Logarithmic Curvature and Torsion graph’s gradient function as a nonlinear ordinary differential equation (ODE) with boundary conditions. The outputs of solving the ODEs result in a well defined Cesaro equation in the form of curvature function that is able to produce both planar as well as spatial curves with promising entities for industrial product design, computer graphics and more.


Full Text: PDF DOI: 10.5539/mas.v8n3p24

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Modern Applied Science   ISSN 1913-1844 (Print)   ISSN 1913-1852 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.