Using a K-Means Clustering Algorithm to Examine Patterns of Vehicle Crashes in Before-After Analysis

Raffaele Mauro, Mario De Luca, Gianluca Dell’Acqua

Abstract


The study aims to develop a support procedure to estimate the efficacy of infrastructural interventions to improve road safety. The study was carried out on a 110 km stretch of the A3 highway, in southern Italy. Data from a huge sample concerning traffic, geometry and accidents for two periods of the same duration were compared, for which cluster analysis, and in particular, the “hard c means” binary partition algorithm was employed. Using cluster analysis, all the accidents with strong similarities were aggregated. Then for each cluster, the “cluster representative” accident was identified, to find the average among the various characteristics (geometrical, environmental, accident-related). A “hazard index” was also created for each cluster, whereby it was possible to establish the danger level for each “cluster”. Using this information, an accident prediction model using a multi-variate analysis was produced. This model was used as a support for decision-making on infrastructures and to simulate situations to which the Before-After technique could be applied.


Full Text: PDF DOI: 10.5539/mas.v7n10p11

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Modern Applied Science   ISSN 1913-1844 (Print)   ISSN 1913-1852 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.