The Effect of Mesh Sizing Toward Deformation Result in Computational Dynamic Simulation for Blast Loading Application

Md Fuad Shah bin Koslan, Ahmad Mujahid Ahmad Zaidi, Mohd Zaid Othman, Shohaimi Abdullah, Suresh Thanakodi

Abstract


The finite element approach was used in the simulation analysis to solve many engineering problems. One of the accuracy factors of this method is dependent on the choice of appropriate element size or mesh discretization. Good mesh discretization can reduce the percentage of error; avoid the computation time approaches to non-practical limits and furthermore, produces the optimal results. The purpose of this study is to identify the best size of mesh elements to be used in the problem analysis using the AUTODYN numerical simulation. The fully clamped circular plate subjected to blast load as per experimental setup was modified and simplified in the two-dimensional (2D) simulation model; it will be seen as a clamped beam at both edges. Plate model were discretized to form nodal and element. The deformation or deflection result found to converge at certain value by increasing the total number of element discretization. Assumed that the deformation results were accurate at the converged state; it will be taken as reference to choose the finest size of mesh element. In this study, several mesh sizes been considered, and the appropriate optimum mesh discretization obtained at range of 0.5 mm to 1 mm.


Full Text: PDF DOI: 10.5539/mas.v7n7p23

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Modern Applied Science   ISSN 1913-1844 (Print)   ISSN 1913-1852 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.