Biophysical Parameters and Actual Evapotranspiration of Bean Culture by Means of Remote Sensing

  •  Allisson Lucas Brandão Lima    
  •  Roberto Filgueiras    
  •  Everardo Chartuni Mantovani    
  •  Daniel Althoff    
  •  Robson Argolo dos Santos    
  •  Luan Peroni Venancio    


Agricultural irrigation is involved in an important chain that involves all sectors of the economy, either directly, by increasing food production, or indirectly, by withdrawing large amounts of fresh water. The relevance of this theme forces the search for alternatives to make water use as rational as possible. Evapotranspiration estimation methods based in remote sensing, such as the SAFER (Simple Algorithm for Evapotranspiration Retrieving) model, become extremely relevant in these scenarios, since it is possible to estimate this parameter in large scales. Therefore, the aim of this research was to apply the SAFER model in the estimation of bean crop actual evapotranspiration using Landsat-8 satellite image data. One of the parameters used as input in the SAFER model is the NDVI (Normalized Difference Vegetation Index), which presented a coefficient of determination (r²) equal to 0.80 when compared to the crop coefficient. The actual evapotranspiration (ETa) estimated by the SAFER model were compared to the FAO 56 model estimates for later correlation between the models. This information is expected to assist the producer in a better management of water resources used in irrigation. The correlation between the two models presented a relevant coefficient of determination (r2 = 0.73), representing the potential of the SAFER model in relation to the FAO model 56.

This work is licensed under a Creative Commons Attribution 4.0 License.