AlGaN/GaN High-Electron-Mobility Transistor Using a Trench Structure for High-Voltage Switching Applications

Minki Kim, Ogyun Seok, Min-Koo Han, Min-Woo Ha

Abstract


We proposed a new AlGaN/GaN high-electron-mobility transistor using a trench structure for high-voltage switching applications. The proposed trench structure was designed for the use at the gate edge, which improved the gate leakage current and breakdown voltage. We considered that the thickness of the AlGaN barrier was related to the polarization, surface-state density and leakage current. The surface states at the gate edge were controlled by etching the AlGaN barrier by 22 nm. The gate leakage current of the proposed device was 40 ?A/mm while that of a conventional device was 201 ?A/mm with a reverse gate-drain voltage of 100 V. The suppressed gate leakage current may have been caused by the decrease in the surface states at the gate edge. The breakdown voltage of the proposed device was 762 V while that of the conventional device without a trench structure was 120 V. The forward drain current and transconductance of the proposed device were decreased slightly because the channel resistance was increased in the trench region. The results of this study suggest that the trench structure improves the off-state characteristics of GaN power switches.


Full Text: PDF DOI: 10.5539/apr.v4n4p1

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Applied Physics Research   ISSN 1916-9639 (Print)   ISSN 1916-9647 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

doaj_logo_new_120 images_120. proquest_logo_120 lockss_logo_2_120 udl_120.