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Abstract

The aim of this study was to increase the resistance to noise of an observer of a non-linear MISO system transformed
into canonical regulation form of order n. For this, the principle idea was to add n observers on the output equations of
the main observer. By adjusting the time scale of the output observers, the resistance to noise of the final estimates is
considerably increased. The proposed method is illustrated by model simulations based on a non-linear Sludge Activation
Model (SAM)
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1. Introduction

State observers have been intensely exploited since (Luenberger, 1966), to model, control or identify linear and non-linear
systems, including the studies of (Krener & Isidori, 1983; Zheng, Boutat, & Barbot, 2009) relating to non-linear systems
transformable into a canonical form. The key idea in such approaches is to produce approximate measures of non-linearity
of order 1, as in Extended Luenberger Observers (ELO) (Ciccarella, Mora, & Germani, 1993). Approximations of non-
linearities in the canonical form (which results in ELO) have already been suggested (Bestle & Zeitz, 1983), and this
approach can be extended to higher order approximations (Röbenack & Lynch, 2004). An observer using a partial non-
linear observer canonical form (POCF) (Röbenack & Lynch, 2006) has weaker observability and integrability existence
conditions than the well-established non-linear observer canonical form (OCF). Non-linear sliding mode observers use
a quasi-Newtonian approach, applied after pseudo-derivations of the output signal (Efimov & Fridman, 2011). State
observers using Extended Kalman Filters (EKF) provide another method of transforming non-linear systems (Boker &
Khalil, 2013), (Rauh, Butt, & Aschemann, 2013). Finding an appropriate method for parameter synthesis remains one of
the major difficulties with state observers for non-linear systems. (Tornambè, 1992), (Mobki, Sadeghia, & Rezazadehb,
2015) proposed high-gain state observers to deal with this problem. High-gain state observers reduce observation errors
for a range of predetermined amplitudes or fluctuations by making the observations independent of parameters. The weak
point of this method is its sensitivity to noise and uncertainty.
In network identification and encryption, observers with delays are used to synchronize chaotic oscillators, as shown
in several studies (Ibrir, 2009; Martínez-Guerra, et al., 2011). Noise and uncertainty are not critical factors in such a
context. This can be very different in the case of industrial processes, as shown in a recent study (Bodizs, 2011), where
the performances of observers using ELO, EKF or Integrated Kalman Filters (IKF) are compared. The influence of noise
and uncertainty on these observer types was emphasized, with more reliable results produced by ELO observers, which
permit the exact state reconstruction of highly perturbed systems. For PI and ELO observer classes, (Söffker, et al.,
2002) demonstrated a compensation effect on measurement errors ; (Khalifa & Mabrouk, 2015) addressed the problem
of uncertainty of non-linear models. One way of overcoming the problem of parametric uncertainty is to use adaptive
observers (Tyukina, et al., 2013; Farza, et al., 2014) in the particular case where the measurements are only available
at discrete instants and have disturbances. Another approach (Mazenc & Dinh, 2014; Thabet, et al., 2014) consists of
defining interval observers. Modeling observer systems by Takagi-Sugeno decomposition (Bezzaoucha, et al., 2013;
Guerra, et al., 2015) is another possibility, as is the use of models using symmetries and semi-invariants (Menini &
Tornambè, 2011), or the use of immersible techniques for systems transformed into a non-linear observer form (Back &
Seo, 2008).

A large number of non-linear MISO systems with multiple inputs and a single output can be transformed into state
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equations using the form :

9zptq “ sptq (1a)

yptq “ dT zptq ` Φptq (1b)

sptq “

»

–

s1
“

zptq, u1ptq
‰

. . .
sn

“

zptq, u1ptq
‰

fi

fl (1c)

dT “
“

d1 . . . dn
‰

(1d)

with the following definitions :
n : the order of the system of non-linear differential equations
m : number of independant inputs
u1ptqT : the vector ru11ptq, . . . um1ptqs of the m independent inputs
yptq : the measurable output variable
zT ptq : the state vector r z1ptq . . . znptq s

dT : the vector of the output parameters of the system
Φptq : the non-linear function of vector u1ptq of the inputs
si

“

zptq, u1ptq
‰

: one of the n non-linear functions of the state vector sptq.

Such systems are often found in nonlinear robotic systems in the form of trigonometric functions. Other systems con-
tain non-linear polynomials (strange attractors, Bernouilli functions, non-linear springs), polynomial fractions, or various
common simple functions . . .
The n non-linear functions of vector sptq employ a vector of m independent inputs u1ptq, as well as the state vector zptq
as input variables. Such a procedure allows amongst other possibilities the description of bi-linear systems. We limited
ourselves in this study to continuous functions in all points of type C1.
One considers that the measurable output is a linear combination of zptq, superimposed on a non-linear functionΦ

“

u1ptq
‰

.
For an engineer or physicist, many applications have such a form. Often, non-linear systems (1) are transformable in a
regulation canonical form concieved by (Fliess, 1990), and are written :

9xptq “ A xptq ` f ptq (2a)

yptq “ cT xptq ` Φptq (2b)
A “ δi j j “ i ` 1, i “ 1 . . . n ´ 1 (2c)

cT “
“

c1 . . . cn
‰

(2d)

f ptqT
“

“

0 . . . 0 Ψ r xptq, Uptq s
‰

(2e)

with the following definitions :
uiptq : the pi ´ 1q ´ th temporal derivative of the vector u1ptq, either uiptqT

“ r u1iptq, . . . umiptq s i “ 2 . . . n
Uptq “

“

u1ptq . . . unptq
‰

: the n ˆ m input matrix, with the group of n vectors uiptq
xiptq : pi ´ 1q th temporal derivative of x1ptq
xT ptq : state vector r x1ptq, . . . xnptq s

c : the output parameters vector of the transformed system
θ ď n : index of last coefficient ci ‰ 0
Ψ r xptq,Uptq s : a scalar non-linear C1 function
A : the n ˆ n matrix of which the last line is zero.

Conversion of the transformed version (2) to the initial representation (1) is performed using :

zptq “ gptq (3a)

gptqT
“

“

g1 r xptq,Uptq s . . . gn r xptq,Uptq s
‰

(3b)

with gptq : the vector of n non-linear inverted transformation functions gi r xptq, Uptq s which link xptq to zptq.

In (Schwaller, Ensminger, Dresp-Langley, & Ragot, 2016) a new observer was proposed which was adapted to this
transformed form, and which provided non-biased robust estimates of xptq. This is not always the case for estimates of
zptq. Functions gi rxptqs (1b) permit linking xptq to zptq (2c) and are called inverted transformations. Because of the non-
linearity of gptq, small perturbations of estimates of xptq may be considerably increased and strongly disturb estimates
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of zptq. The main aim of this study was to solve this type of situation, by introducing the inverted observer transform
functions gi rxptqs. Doing this, the resistance to observer noise is affected (Bodizs et al., 2011), and one obtains a tool
capable of limiting its impact on estimates of zptq.

Definition 1 Let us define, for the moment, a normalised pulse ωo “ 2π{To, which introduces a new time scale τ for the
representation of the transformed state of the system :

9xpτq “ A xpτq ` f pτq (4a)

ypτq “ rcT xpτq ` Φpτq (4b)

rcT
“

“

rc1 . . . rcn
‰

(4c)

f pτqT
“

“

0 . . . 0 rΨ r xpτq,Upτqs
‰

(4d)

and for the inverse transformation system :

zpτq “ gpτq (5a)

gpτqT
“

“

g1 r xpτq,Upτq s . . . gn r xpτq,Upτq s
‰

(5b)

with :

τ “ ωo t, 9xnptq “ 9xnpτq ωo
n (6a)

ui jptq “ ui jpτq ωo
i´1, xiptq “ xipτq ωo

i´1 (6b)

rci “ ci ωo
i´1, ziptq “ zipτq, i “ 1 . . . n (6c)

f pτq and gpτq are vectors with dimension n. In (4b), Φpτq “ Φ
“

u1pτq
‰

“ Φ
“

u1ptq
‰

. Equations (6) define time
dilatation or retraction of the state representation and its new parameters, without changing the pattern of the signal xipτq.
For the function Ψ, this is translated by the relation of changing the following scale representation :

Ψ r xptq,Uptqs “ ωo
n

rΨ r xpτq,Upτqs (7)

The function rΨ r xpτq,Upτq s is obtained by replacing every state or command variable by the corresponding one in (6)
and dividing everything by ωo

n.

Afterwards, the procedure can be separated into several steps: in section 2, the estimation of the state of the transformed
system (4) is dealt with ; in section 3 a new observation method of the inverse transformation functions which permit
estimation of state variables (1) is presented ; in section 4 this new approach is applied to observe a system of management
of activated sludge in a purification station ; the study is concluded in section 5.

2. Structure of the Observer in Canonical Form

To begin with, let us isolate the componant x1pτq of (4b) which will subsequently serve to determine the observation error.
To obtain y1pτq, the estimation of variable x1pτq, three cases may be distinguished. For θ “ 1 :

y1pτq “
ypτq ´ Φpτq

rc1
(8)

For θ “ 2, it becomes :

9y1pτq “ ´
rc1

rc2
y1pτq `

ypτq ´ Φpτq

rc2
(9)

In the most general case where θ ą 2, ypτq ´ Φpτq is filtered by :

9wpτq “ K wpτq ` k r ypτq ´ Φpτq s (10a)

K “

»

—

—

—

–

0 1 0 . . .
0 0 1 . . .
. . . 0 0 1

´
rc1

rcθ
. . . . . . ´

rcθ´1

rcθ

fi

ffi

ffi

ffi

fl

(10b)

wpτqT
“

“

y1pτq . . . yθ´1pτq
‰

, wp0q “ 0 (10c)

kT “
“

0 . . . 0 1{rcθ
‰

(10d)
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To analyze the effect of the filter, we rewrite (4b) in scalar form, ignoring rcθ`1 . . . rcn, which are all zero :

ypτq ´ Φpτq “

θ
ÿ

i“1

rci xipτq (11)

If (11) is inserted in (10a), (9) or (8) as a function of θ, it becomes :

θ
ÿ

i“1

rci yipτq “

θ
ÿ

i“1

rci xipτq (12a)

9yθ´1pτq “ yθpτq θ ě 2 (12b)

The Laplace transformation of (12a) gives the transfer function :

y1psq{x1psq “ 1 (13)

To develop the rest, y1pτq is used to determine the observer error.

Definition 2 To generate state estimates vpτq for the system (4), a PI observer structure is defined in (Schwaller, Ens-
minger, Dresp-Langley, & Ragot, 2016) with :

9
qxpτq “ A qxpτq ` rf pτq ` qh ∆y1pτq (14a)

9
pxpτq “ A pxpτq ` qA qxpτq ` ph ∆y1pτq (14b)

∆y1pτq “ x1pτq ´ px1pτq (14c)

rf pτq
T

“
“

0 . . . 0 rf pτq
‰

(14d)

9I0pτq “ h0 ∆y1pτq (14e)
rf pτq “ I0pτq ` rΨ r vpτq,Upτq s (14f)

qxpτqT
“

“

qx2pτq . . . qxnpτq
‰

(14g)

pxpτqT
“

“

px1pτq . . . pxn´1pτq
‰

(14h)

vpτqT
“

“

px1pτq qxpτqT ‰

(14i)

pxp0q “ qxp0q “ 0, I0p0q “ 0 (14j)

qh
T

“
“

0T h1
‰

(14k)

ph
T

“
“

hn . . . h2
‰

(14l)

hT “

”

ph
T
, h1

ı

(14m)

A “ δi j, j “ i ` 1, i “ 1 . . . n ´ 1 (14n)

qA “

»

—

—

—

—

–

0 . . . . . . 0
...
. . . . . .

...
... 0

...
0 . . . . . . 1

fi

ffi

ffi

ffi

ffi

fl

(14o)

with qxpτq (14g) and pxpτq (14h) as two distinct state vectors of dimension n ´ 1, coupled using the matrices A (14n) and qA
(14o) of dimension pn ´ 1q ˆ pn ´ 1q. The vectors qh and ph are also of dimension n ´ 1. The matrix A is constructed using
the Kronecker operator which puts the upper diagonal at 1. The parameters hi, i “ 0 . . . n are the gains of the observer.

Figure 1 illustrates the functional diagram of such an observer of third order.

The augmented vector vpτq (14i),(14h) and (14g) is used as estimation of xpτq and as variable of the function rΨ r vpτq,Upτq s

(14f). The state pxpτq (14b) is an observer exploiting the observation error ∆y1pτq (14c) via the gains hi (14m) serving to
correct the state distances between the system and its observer.
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h2 h3h0

I0

h1

qx3 x̂2 x̂1

∆y1
y1 “ x1

U

ωo
s

ωo
s

ωo
s

ωo
s

-

rΨ r Upτq, vpτq s

ωo
s

vpτq

qx2

Figure 1. Third order observer

In figure 1, for example, we have :
pxpτqT

“
“

px1pτq px2pτq
‰

qxpτqT
“

“

qx2pτq qx3pτq
‰

vpτqT
“

“

px1pτq qx2pτq qx3pτq
‰

ph
T

“
“

h3 h2
‰

qh
T

“
“

0 h1
‰

The choice of using two state variables pxpτq and qxpτq is motivated by the n ´ 1 successive integrations of 9
qxnpτq in which

no ph ∆y1pτq re-injection error is involved. This allows an increase in the robustness of the estimations to the measurement
noise, which in general affects the variable y1pτq. One thus overcomes a common weak point of high gain observations, i.e.
their sensitivity to measurement noise. The second advantage comes from the non-linear function rΨ rvpτq,Upτqs which
is no longer subjected to the restrictive conditions used in (Schwaller, Ensminger, Dresp-Langley, & Ragot, 2013), and
covers the ensemble of the systems described by (Fliess, 1990). The vector rf pτq (14d), of dimension n ´ 1, compensates
the effects of f pτq, and of possible external exogenous disturbance of (2) using the integral component I0pτq (14e). One
notes that at the second order, for a gain h0 “ 0 inhibiting the integrator I0, the observer becomes similar to that proposed
by (Gauthier, Hammouri, & Othman, 1992) for a SISO system.

In (Schwaller, Ensminger, Dresp-Langley, & Ragot, 2016), a full analysis was performed in order to determine the dy-
namics of the observation error ∆y1pτq (14c) and its successive derivatives, to characterise stability conditions and also
the exponential convergent nature of estimates vpτq. A mthod to synthesize parameters h0 . . . hn was also proposed.

3. Observation of the Original System via the Inverted Transformation Functions

3.1 New observers definitions

In (5b), the inverted transform functions gpτq allow converting the system in the canonical form of regulation back to the
original form (1). Using the estimates vpτq reconstructed by the observer (14), it is possible to define : (15)

pziptq “ pgi r vpτq, Upτq s i “ 1 . . . n (15a)

pzptqT
“

“

pz1ptq . . . pznptq
‰

(15b)

One thus obtains estimatespzptq of zptq (1). If the stability conditions (Theorem 1 of (Schwaller, Ensminger, Dresp-Langley,
& Ragot, 2016)) are respected, pzptq Ñ zptq when ∆y1ptq Ñ 0. Similarly, 9

pzptq Ñ 9zptq when ∆y1ptq Ñ 0. One then has :

lim
∆y1ptq Ñ 0

9
pzptq “ 9zptq (16a)

9
pzptq

T
“

“

ps1ptq . . . psnptq
‰

(16b)

psiptq “ si
“

pzptq, u1ptq
‰

i “ 1 . . . n (16c)
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pg
1

“

Upτq, vpτq
‰

U

v

1 2

-

qz1I1

qznu1

. . .

ω1
s

ω1
s

∆z1 pz1

s1
“

u1ptq, qzptq
‰

{ωi

Figure 2. Observer of inverse function pz1pτ1q

The n estimates pziptq can be used as reference inputs to observe n state variables qziptq which tend towards (15a). Their
temporal derivatives tend towards 9

pzptq, which themselves tend towards 9zptq (16). With the model (14), one defines n first
order observers. Each is normalised by a pulse ωi which leads to its dimensionless time definition (17e), possesses its
own Lipschitz constant, and its specific stability conditions that we have to find. Synthesising the gains hi (subsection 2.4
of (Schwaller, Ensminger, Dresp-Langley, & Ragot, 2016)) gives h0 “ 1 and h1 “ 2. The n observers are written :

9
qzipτiq “ Iipτiq ` 2 ∆zipτiq ` qsipτiq (17a)
9Iipτiq “ ∆zipτiq i “ 1 . . . n (17b)
∆zipτiq “ pzipτiq ´ qzipτiq (17c)

qsipτiq “ si
“

qzptq, u1ptq
‰

{ ωi (17d)

τi “ ωi t (17e)

with qzptq “
“

qz1ptq . . . qznptq
‰

the vector of the estimations of pzptq ; qsipτiq is the normalised non-linear function of
9
qzipτiq. Figure 2 illustrates (15) and (17).

The general calculation procedure is as follows :

• estimation of vpτq (14i) after treatment of (14);

• estimation of pzptq (15) ;

• estimation of the n state distances (17c) ;

• determination of the n non-linear functions qsipτiq (17d) to access the n terms 9
qzipτiq (17a) and 9Iipτiq (17b) ;

• integration of the n equations (17a) to obtain qzptq.

The temporal derivative of (17c) and inserting (17a) in the rest obtained enables one to obtain the expression of ∆9zipτq :

∆9zipτiq “ 9
pzipτiq ´ 9

qzipτiq i “ 1 . . . n (18a)

“ ∆rΨipτiq ´ Iipτiq ´ 2 ∆zipτiq (18b)

∆rΨipτiq “ psipτiq ´ qsipτiq (18c)

psipτiq “ si
“

pzptq, u1ptq
‰

{ ωi (18d)

3.2 Dynamics of the Observer Errors

We now characterise the dynamics of the observer errors by searching the n differential equations of the distances ∆zipτiq.
Due to the presence of integrators Iipτiq, an extra temporal derivative is necessary to obtain the differential equation of the
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distances ∆zipτiq. To do this, it is necessary to define the following augmented vectors :

Υpτiq “
“

u1pτiq u2pτiq
‰

(19a)

pzipτiq
T

“

”

pzipτiq
9
pzipτiq

ı

i “ 1 . . . n (19b)

qzipτiq
T

“

”

qzipτiq
9
qzipτiq

ı

(19c)

∆zipτiq
T

“
“

∆zipτiq ∆9zipτiq
‰

(19d)

pZpτiq
T

“
“

pz1pτiq . . . pznpτiq
‰

(19e)

qZpτiq
T

“
“

qz1pτiq . . . qznpτiq
‰

(19f)

∆Zpτiq
T

“
“

∆z1pτiq . . . ∆znpτiq
‰

(19g)

The temporal derivative of (18b) is written :

∆:zipτiq “ ∆
9
rΨipτiq ´ ∆zipτiq ´ 2 ∆9zipτiq i “ i . . . n (20a)

∆
9
rΨipτiq “ 9si

”

pZpτiq,Υpτiq

ı

´ 9si

”

qZpτiq,Υpτiq

ı

(20b)

and gives the scalar expression of the differential equations of the observation errors. Using notations (19) gives the
matricial writing of (20a) in the form of state equations :

∆9zipτiq “ Ai ∆zipτiq ` ∆
9
rΨipτiq i “ 1 . . . n (21a)

Ai “

„

0 1
´1 ´2

ȷ

(21b)

∆
9
rΨipτiq “

«

0

∆
9
rΨipτiq

ff

(21c)

Assuming that the non-linear functions 9si are at least locally Lipschitz in Zpτiq, and uniformly bounded in Υpτiq in an
invariant set, they are associated with a Lipschitz constant Li :

›

›

›
∆

9
rΨipτiq

›

›

›
ď Li } ∆Zpτiq } i “ 1 . . . n (22)

Applying the Lipschitz inequality to (20b) permits reduction to ∆Zpτiq the number of useful variables to characterise the

perturbing difference ∆ 9
rΨipτiq. For many systems, if functions 9si are not globally of a Lipschitz type, they can be locally

or be transformed adequately into the Lipschitz type.

3.3 Convergence of State Observations

Now let us try to analyse the globally asymptotic development of the observation errors and to characterise the limiting
stability conditions of each observer (17).

Theorem 1 Let us consider a MISO system decomposable as described in (4), for which the observer structures (14) and
(17) are used, and related to each other by the inverted transform function (15a). If the system function 9si

”

pZpτiq,Υpτiq

ı

is locally of the Lipschitz type in pZpτiq and uniformly bounded in Υpτiq in an invariant set, with a Lipschitz constant Li

(22), then the observer (17) will be locally stable if the Lipschitz constant Li satisfies the following conditions :

Li
2 ď

2 σi ϕi1 ´ 1

4 n σi
2 ϕi1

ˆ

λi
2

ϕi1
`
ϕi1

4

˙
(23a)

Li
2 ď

2 σi p 4 ϕi2 ´ ϕi1 q ´ 1

4 n σi
2 ϕi2

ˆ

ϕi2 `
ϕi1

2

4 ϕi2

˙ (23b)

λi ą 0, σi ą 0, ϕi1 ą 0, ϕi2 ą 0 i “ 0 . . . n (23c)
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If the system function 9si

”

pZpτiq,Υpτiq

ı

is globally of the Lipschitz type, and if the Lipschitz constant Li satisfy (23), then
the observers (17) will be globally asymptotically stable.

Proof. The proof of theorem 1 can be demonstrated by proving the stability of (21a) using an appropriate positive
Lyapunov function, like the following quadratic function :

qVnpτiq “

n
ÿ

i“1

vipτiq (24a)

vipτiq “ ∆zipτiq
T Pi ∆zipτiq (24b)

Pi “

„

λi 0
ϕi1 ϕi2

ȷ

(24c)

The Pi lower triangular matrix are defined as positive and satisfying the Sylvester criteria, with (24c). The proof of
convergence is linked to the study of the sign of the derivative of the candidate for a Lyapunov function. This is obtained
after temporal derivation of (24a), and after placing (21a) in the result obtained for terms ∆9zipτiq :

9
qVnpτiq “

n
ÿ

i“1

9vipτiq (25a)

9vipτiq “ ∆zipτiq
T Q

i
∆zipτiq ` Nipτiq i “ 0 . . . n (25b)

Q
i

“ Ai
T Pi ` Pi Ai

“

„

´ϕi1 0
2pλi ´ ϕi1q ´ ϕi2 ϕi1 ´ 4ϕi2

ȷ

(25c)

Nipτiq “ ∆zipτiq
T S i ∆

9
rΨipτiq (25d)

S i “ Pi ` Pi
T (25e)

An appropriate choice of ϕi1, ϕi2 can provide negative diagonal coefficients for Q
i
. The criterion of semi-negativity of

Sylvester is then respected, and the successive minors of Q
i

will be of opposite sign, ensuring the semi-negativity of the
first member on the right of (25b). Verifying the sign of the second member on the right of (25b) involves increasing
Nipτiq using the inequalities of Schwartz and Lipschitz (22) :

Nipτiq ď

›

›

›
∆zipτiq

T S i ∆
9
rΨpτiq

›

›

›
(26a)

ď

›

›

›
∆zipτiq

T S i

›

›

›

›

›

›
∆

9
rΨpτiq

›

›

›
(26b)

ď

›

›

›
∆zipτiq

T S i

›

›

›
L

›

› ∆zipτiq
›

› (26c)

To determine the sign of 9vipτiq function, one applies the following inequality :
›

›

›
apτiq

T bpτiq

›

›

›
ď

n σi

2
apτiq

T apτiq `
1

2 n σi
bpτiq

T bpτiq (27a)

apτiq “ L S i
T zipτiq (27b)

bpτiq “ ∆zipτiq (27c)

to (26c) to obtain the desired increase of Nipτiq :

Nipτiq ď ∆zipτiq
T Ri ∆zipτiq i “ 1 . . . n (28a)

Ri “
n σiLi

2

2
S i S i `

I
2 n σi

(28b)

In (28a) yields a positive lower triangular matrix Ri (28b), the diagonal elements of which are written :

r j j “

$

’

&

’

%

2 n σi Li
2

`

λi
2 ` ϕi1

2{4
˘

`
1

2σi
j “ 1

2 n σi Li
2

`

ϕi2
2 ` ϕi1

2{4
˘

`
1

2σi
j “ 2

(29)

45



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 2; 2017

The inequality (28a) permits deduction of (25b) :

9vipτiq ď ∆zipτiq
T Mi ∆zipτiq (30a)

Mi “ Q
i
` Ri (30b)

With negative functions 9vipτiq, adding together the diagonal terms of (25c) and (29), and imposing Q
i

` Ri ď 0, one
obtains the conditions (23). The sum Q

i
` Ri yields an inferior triangular matrix that satisfies Sylvester criteria of semi-

negativity if inequalities (23a) and (23b) are satisfied. Then, if ∆ 9
rΨipτiq (20b) is Lipschitz (22), 9vipτiq is semi-negative and

(21a) is globally and asymptotically stable ; (21a) is locally stable if (22) is locally Lipschitz �
Using the (theorem 2, section 2.3, (Schwaller, Ensminger, Dresp-Langley, & Ragot, 2016)), it is easy to demonstrate that
the observers (17) will be exponentially convergent.

4. Application to a Sludge Activation Model

Let us now illustrate the proposed observation method by applying it to a non-linear example with multiple inputs.

4.1 Original Model

For this we choose a simplified treatment model for activated sludge ASM1 similar to that used by (Nagy-Kiss et al.,
2010), and structurally of the same types as (1) :

9ziptq “ siptq i “ 1 . . . 3 (31a)
y1ptq “ z1ptq y2ptq “ z2ptq (31b)

with :

s1ptq “ k1 ℓ1ptq ` k2 z3ptq ´ k3 ℓ2ptq z3ptq (32a)
s2ptq “ k4 ℓ3ptq ´ k1 ℓ4ptq ´ k5 ℓ2ptq z3ptq (32b)
s3ptq “ k9 ℓ5ptq ´ k6 ℓ6ptq ´ k7 z3ptq ` k8 ℓ2ptq z3ptq (32c)

and non-linear functions :

ℓ1ptq “ u11ptq p u31ptq ´ z1ptq q (33a)

ℓ2ptq “
z1ptq z2ptq

p k10 ` z1ptq q p k11 ` z2ptq q
(33b)

ℓ3ptq “ u21ptq r k12 ´ z2ptq s (33c)
ℓ4ptq “ u11ptq z2ptq (33d)
ℓ5ptq “ u11ptq u41ptq (33e)
ℓ6ptq “ u11ptq z3ptq (33f)

u1ptq “
“

u11ptq . . . u41ptq
‰

(33g)

The constants used are given by :

k1 “ 5 ¨ 10´11 k2 “ 1, 08 ¨ 10´5 k3 “ 2.872 ¨ 10´4

k4 “ 3.5 10´4 k5 “ 9 ¨ 10´5 k6 “ 1.316 ¨ 10´12

k7 “ 4.8 ¨ 10´6 k8 “ 7.47 ¨ 10´5 k9 “ 8 ¨ 10´11

k10 “ 20 k11 “ 0.2 k12 “ 10

(34)

u1ptq (33g) represent the inputs of the system (figures 3(a),(b),(c),(d) page 10), respectively the input flow of waste water,
the flow of injected air, the concentration soluble carbonated substrate recycled, the particle concentration of recycled
heterotrophic biomass. All abscissas of the figures are expressed in hours.

The variables z1ptq, z2ptq z3ptq represent the state of the reactor (figures 3(e),(f),(g)), respectively the concentration of
rapidly biodegradable substrate, the concentration of dissolved oxygen, the particle concentration of biomass, with (34)
its parameters, all known, and z1p0q “ 4.1, z2p0q “ 3.0, z3p0q “ 867 the initial conditions. The sizes y1ptq, y2ptq (31b)
represent the measurable outputs.
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(g) z3ptq, concentration of biomass

Figure 3. Input variables and state variables of the bioreactor
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4.2 Model Transformed in a Canonical Form of Regulation

We now transform the two first order differential equations (32b) and (32c) into a single second order differential equation.
With this one we determine a function Ψ r xptq, Uptq s and a new differential equation in a canonical form of regulation.
As this application of the general procedure of transformation permits passage from systems (1) to (2) (Fliess, 1990) it
will permit the use of an observer similar to that proposed in (14), associated with inverted transformation (15) and with
observers (17).
In our example we try to observe the measured output y2ptq and its successive derivatives, to subsequently determine an
estimation of the immeasurable variable z3ptq. From s2ptq (32b) we deduce z3ptq :

z3ptq “
k4 ℓ3ptq ´ k1 ℓ4ptq ´ 9z2ptq

k5 ℓ2ptq
(35)

The temporal derivative of (35) gives an expression of 9z3ptq which can be equated to s3ptq (32c). We thus deduce :

9x1ptq “ x2ptq (36a)
9x2ptq “ Ψ r xptq, Uptq s (36b)

Ψ r xptq, Uptq s “ k4 9ℓ3ptq ´ k1 9ℓ4ptq ´ k5 ℓ7ptq (36c)

ℓ2ptq “
z1ptq x1ptq

p k10 ` z1ptq q p k11 ` x1ptq q

“ nptq{dptq (36d)
ℓ3ptq “ u21ptq r k12 ´ x1ptq s (36e)
ℓ4ptq “ u11ptq x1ptq (36f)
ℓ6ptq “ u11ptq z3ptq (36g)

ℓ7ptq “ z3ptq 9ℓ2ptq ` s3ptq ℓ2ptq (36h)
z2ptq “ x1ptq (36i)

System (36) is made up of a second order differential equation, in a canonical regulation form structurally of the same
type as that described in (2). The derived functions 9ℓ3ptq, 9ℓ4ptq of (36c), and 9ℓ2ptq, s3ptq of (36h) are defined by :

9ℓ2ptq “ 9nptq dptq ´ 9dptq nptq{dptq2 (37a)
9nptq “ s1ptq x1ptq ` z1ptq x2ptq (37b)
9dptq “ s1ptq pk11 ` x1ptqq ` x2ptq pk10 ` z1ptqq (37c)

s1ptq “ k1 ℓ1ptq ` k2 g3ptq ´ k3 ℓ2ptq g3ptq (37d)
9ℓ3ptq “ u22ptq p k12 ´ x1ptq q ´ u21ptq x2ptq (37e)
9ℓ4ptq “ u12ptq x1ptq ` u11ptq x2ptq (37f)
s3ptq “ k9 ℓ5ptq ´ k6 ℓ6ptq ´ k7 g3ptq ` k8 ℓ2ptq g3ptq (37g)

Equation 9z1ptq “ s1ptq defined in (31a) is conserved, and the integration of s1ptq provides z1ptq, which is the measured
output variable defined in (31b). The system of equation of functions of inverted transforms (3b) should permit in our
example determination of z3ptq. It is written :

z1ptq “ g1ptq (38a)
z2ptq “ g2ptq (38b)

z3ptq “ g3ptq “
k4 ℓ3ptq ´ k1 ℓ4ptq ´ x2ptq

k5 ℓ2ptq
(38c)

and permits linking xptq to zptq: z3ptq is a non-linear function of Uptq and xptq through ℓ2ptq, ℓ3ptq and ℓ4ptq.
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4.3 Time Scaling of rΨ rUptq, xptqs, Observation of z2ptq in Canonical Form of Regulation and Determination of the Inverted
Transform System

Using (7), one can temporally normalise (36b), putting for rΨpτq the definition of the following input-output variables :

rΨpτq “ rΨ
“

vaptq,Uptq
‰

{ωo
2 (39a)

vaptqT
“

“

qz1ptq vptq
‰

(39b)

vptqT
“

“

px1ptq qx2ptq
‰

(39c)
qx2ptq “ ωo qx2pτq px1ptq “ px1pτq (39d)

Uptq “
“

u1ptq u2ptq
‰

(39e)

The scaling pulse chosen for (39) is ωo “ 3.927 10´2 rd{s. In (39b) we define vaptq as the vector vptq (14i) augmented
by variable qz1ptq, itself resulting from observation of the measured variable y1ptq.
Note that vptq contains two second order terms because of (36). Equation (39d) allows conversion of time scaled state
variables to temporal variables. Taking (7) and definitions (39) into account, function rΨpτq in scaled time used in (39a) is
written :

rΨpτq “

´

k4
9
pℓ3ptq ´ k1

9
pℓ4ptq ´ k5 pℓ7ptq

¯

{ωo
2 (40a)

pℓ1ptq “ u11ptq p u31ptq ´ qz1ptq q (40b)
pℓ2ptq “ pnptq{pdptq (40c)
pℓ3ptq “ u21ptq r k12 ´ px1ptq s (40d)
pℓ4ptq “ u11ptq px1ptq (40e)
pℓ5ptq “ u11ptq u41ptq (40f)
pℓ6ptq “ u11ptq pz3ptq (40g)

pℓ7ptq “ pz3ptq 9
pℓ2ptq ` 9

pz3ptq pℓ2ptq (40h)
pnptq “ qz1ptq px1ptq (40i)
pdptq “ p k10 ` qz1ptq q p k11 ` px1ptq q (40j)

The derived functions 9
pℓ3ptq, 9

pℓ4ptq of (40a) and 9
pℓ2ptq, 9

pz3ptq of (40h) are defined by :

9
pℓ2ptq “

9
pnptq pdptq ´

9
pdptq pnptq

pdptq
2 (41a)

9
pnptq “ 9

pz1ptq px1ptq ` qz1ptq qx2ptq (41b)
9
pdptq “ 9

pz1ptq p k11 ` px1ptq q ` qx2ptq p k10 ` qz1ptq q (41c)
9
pℓ3ptq “ u22ptq p k12 ´ px1ptq q ´ u21ptq qx2ptq (41d)
9
pℓ4ptq “ u12ptq px1ptq ` u11ptq qx2ptq (41e)
9
pz1ptq “ k1 pℓ1ptq ` k2 pz3ptq ´ k3 pℓ2ptq pz3ptq (41f)
9
pz3ptq “ k9 pℓ5ptq ´ k6 pℓ6ptq ´ k7 pz3ptq ` k8 pℓ2ptq pz3ptq (41g)

The observer in canonical form of regulation of the system(36) is written :

9
px1pτq “ qx2pτq ` h2 ∆y1pτq (42a)
9
qx2pτq “ I0pτq ` h1 ∆y1pτq ` rΨpτq (42b)
9I0pτq “ h0 ∆y1pτq (42c)
∆y1pτq “ y2pτq ´ px1pτq (42d)

with y2pτq (31b) used to form the observation error ∆y1pτq (14c).
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Figure 4. Search for Lipschitz constants
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Figure 5. State distances without measurement noise
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Figure 6. State distances with measurement noise

The estimate pz3ptq of z3ptq used in (40h), (41f) and (41g) and also the estimate pz2ptq of z2ptq are defined by the following
inverted transform functions :

pz1ptq “ y1ptq (43a)
pz2ptq “ px1ptq (43b)

pz3ptq “
k4 pℓ3ptq ´ k1 pℓ4ptq ´ qx2ptq

k5 pℓ2ptq
(43c)

pzptq “
“

pz1ptq pz2ptq pz3ptq
‰

(43d)

4.4 Observation of the Inverted Transformation System

The inverted transformation system (43) serves to form the errors (14c) of three first order observers of the same type as
those defined in (17), in order to estimate pzptq.

The observed outputs and the scaling pulsation choices are given by :

qzptq “
“

qz1ptq qz2ptq qz3ptq
‰

(44a)

qsipτiq “
si

“

u1ptq,qzptq
‰

ωi
i “ 1 . . . 3 (44b)

ω1 “ωo ω2 “ ω3 “ ωo{5 (44c)
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the observer of pz1ptq is written :

9
qz1pτ1q “ I1pτ1q ` 2 ∆z1pτ1q ` qs1pτ1q (45a)

qs1pτ1q “
k1 pℓ1ptq ` k2 qz3ptq ´ k3 qℓ2ptq qz3ptq

ω1
(45b)

qℓ2ptq “
qz1ptq qz2ptq

p k10 ` qz1ptq q p k11 ` qz2ptq q
(45c)

9I1pτ1q “ ∆z1pτ1q (45d)
∆z1pτ1q “ pz1ptq ´ qz1pτ1q (45e)

That of pz2ptq :

9
qz2pτ2q “ I2pτ2q ` 2 ∆z2pτ2q ` qs2pτ2q (46a)

qs2pτ2q “
k4 qℓ3ptq ´ k1 qℓ4ptq ´ k5 qℓ2ptq qz3ptq

ω2
(46b)

qℓ3ptq “ u21ptq r k12 ´ qz2ptq s (46c)
qℓ4ptq “ u11ptq qz2ptq (46d)

9I2pτ2q “ ∆z2pτ2q (46e)
∆z2pτ2q “ pz2ptq ´ qz2pτ2q (46f)

that of pz3ptq :

9
qz3pτ3q “ I3pτ3q ` 2 ∆z3pτ3q ` qs3pτ3q (47a)

qs3pτ3q “

„

k9 pℓ5ptq ´ k6 u11ptq qz3ptq
´k7 qz3ptq ` k8 qℓ2ptq qz3ptq

ȷ

{ω3 (47b)

9I3pτ3q “ ∆z3pτ3q (47c)
∆z3pτ3q “ pz3ptq ´ qz3pτ3q (47d)

The observer (45) is there to counteract the effect of measurement noise superimposed on z1ptq, which has sometimes a
very great impact on the estimates pz3ptq (43c), due to the term pℓ2ptq in the denominator.
The scaling of (46b) and (47b), parts of (45b) is defined in (44c). This has for effect to strongly reduce the noise on
estimates qz2ptq and qz3ptq.

We now try to determine the Lipschitz constants that subsequently will allow defining the stability conditions of each
observer. We thus start by looking for L in (36) using the same calculation method as that explained in ((Schwaller,
Ensminger, Dresp-Langley, & Ragot, 2016), section 3.1).

With (31)-(34) and (38c) we get x2ptq by using zptq, ℓ2ptq ℓ3ptq and ℓ4ptq. Then it is possible with (36c) and (38b) to
calculate xptq and then rΨ rxptq,Uptqs {ωo

2.

Using the initial conditions zp0q with the same method of calculation, we can determine rΨ rxp0q,Uptqs {ωo
2. We then

calculate the state distance ∆9ypτq. Numerical derivation of rΨ rxptq,Uptqs {ωo
2´ rΨ rxp0q,Uptqs {ωo

2 permits determination
of the augmented vector y

a
pτq of observation error and to obtain a Lipschitz constant adapted to the observer (42). Figure

4 (b) page 13 illustrates this procedure and allows choosing a constant L “ 0.15. The abscissa is represented only
for the first three hours of recording, the region where convergence of observers is expected. using the same stability
conditions explained in ((Schwaller, Ensminger, Dresp-Langley, & Ragot, 2016), section 2.3 and 2.4), we fix parameter
ϕ3 “ 2, ϕ2 “ 2, ϕ1 “ 4. We choose λ “ 1{8, σ “ 1 and obtain the limiting conditions to respect to synthesise the gains
hi :

h0 ě 0.273 h1 ě 0.512 h2 ě 1.3175 (48)

Using ν “ 1 and n “ 2, we get :
ha “

“

1 3 3
‰

(49)

which respects the conditions (48).
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We now try to determine constants L1, L2, L3 of inverted transformation observer functions. We use a similar procedure

to estimate ∆Zpτiq, ∆
9
rΨipτiq and their respective modules. Figures 4(a),(c) and (d) allows the choice of Lipschitz constants

L1 “ 0.1, L2 “ L3 “ 0.02 (22).

If we fix ϕi1 “ ϕi2 “ 2, σi “ 1, n “ 3, λi “ 1{8 for i “ 1 . . . 3 the stability conditions (23) are respected, and the three
observers of pgpτq will be stable and properly damped.

4.5 Simulations and Results Obtained

The aim of the simulation is to observe the overall stabilisation of observers to an initial difference in biomass concentra-
tion.

The initial conditions of (39) are fixed at

I0p0q “ 0, qx2p0q “ ´0.164, px1p0q “ z2p0q “ 3

Those of (45) at qz1p0q “ z1p0q “ 4.1, those of (46) at qz2p0q “ 3, those of (47) at qz3p0q “ 600.

In figures 5(a)- 5(c) the exponential convergent reduction of the state distances ziptq ´ qziptq are visualised for zero mea-
sured noise on the outputs y1ptq and y2ptq. The same test is performed by adding two bandwidth limited white noise to
outputs y1ptq and y2ptq. These uncorrelated noises have an amplitude of 1% on each of the variables. Figure 4(h) permits
verification that the dynamics of convergence of qz3ptq is conserved. The normative pulse ωo chosen for (39) and (45) allow
reduction of residual noise by about 10% compared with the measured variables and to contain that still present in pz3ptq.
This setting permits however to have a rate of convergence of qz1ptq and px1ptq of the same order as the abrupt variations
that are seen in z1tq and z2ptq.
In figures 6(a)-(c) page 14 the smoothing effect on the estimates of observer (46) and (47) is illustrated : division by 5 on
the noise on y2ptq for qz2ptq and fluctuations of 2% on superimposed noise compared with the full scale for qz3ptq.

5. Conclusions and Perspectives

Observation in canonical form of regulation that is proposed in (Schwaller, Ensminger, Dresp-Langley, & Ragot, 2016)
did not take into account the effect of measurement noise on the inverted transformation, which allowed passing from
the observation of transformed systems to the non-transformed state space. Certain non-linear functions, because of
their nature, can greatly amplify the effect of extraneous perturbations on the final estimations. Observers of inverted
transformation functions limit this type of effect. The time scale of each observer affects the stability conditions of
each observer, via the value of the Lipschitz constant. This also greatly influences the existing noise on the estimated
variables. By reducing the pulse ωi of the observers (17), the Lipschitz constant Li is reduced, and similarly the magnitude
of remaining noise on estimates qziptq and one increases the convergence time. Setting the rate of convergence of each
observer can be done independently.
Observer stability and synthesising observer gains employ demonstrations published in the previous study.
The proposed technique can be applied to other observers (Gauthier, Hammouri, & Othman, 1992) or to different high
gain observers. Observation of inverted transformation functions opens the route to identification on line of parameters of
n equation of the state of vector sptq (1c). In fact, it is possible to consider using the n functional distances between 9

pziptq
and si

“

u1ptq,qzptq
‰

to identify parameters of the n functions si
“

u1ptq, zptq
‰

(1c). This could provide a means of dealing
with parametric uncertainty in state equations of the system (1), as well as external perturbations, which are already
compensated by the integral component of the observer (14e).
Finally, by slightly modifying the filter (8)-(10), it can be envisaged to extend the proposed method to multivariable
MIMO systems with multiple outputs.
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