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Abstract 
Cassava is consumed in the Democratic Republic of Congo (DRC) as a staple food for the majority of the 
Congolese population. This crop is used in several forms: as fufu, chikwangue and pondu; cassava leaves are the 
most consumed vegetable in the country. 

In 2002, cassava root symptoms similar to cassava brown streak disease (CBSD) were reported for the first time 
in western DRC. PCR assays, using primers specific to Cassava brown streak virus (CBSV), failed to detect or 
identify any viral pathogens in diseased cassava samples from western DRC. Therefore, next generation 
sequencing (NGS) techniques were used as they are able to sequence full organism genomes and are widely used 
for the identification of pathogens responsible for new diseases. The main objective of this study was to identify 
the pathogens causing root necrosis in western DRC. 

Whatman®FTA™ cards were used to collect 12 cassava leaf samples from plants with symptoms indicative of 
very severe root necrosis, as well as two asymptomatic samples. These 12 samples were sent to Australia at the 
University of Western Australia in Perth for next generation sequencing (NGS) using the Illumina HiSeq 
platform.  

Additional bioinformatics tools included Geneious, CLC workbench, ParaKraken and Kaijou software for short 
DNA sequences. No viruses (including CBSV) were found in any of the DRC samples. These preliminary results 
confirm all the previous negative results obtained using PCR and CBSV primers. However, NGS analyses did 
reveal the presence of a number of bacterial and fungal taxa. These will require further investigation and tests 
such as the Koch Postulates, to establish their specific pathogenic role in cassava. 

This is the first scientific evidence that no currently known virus is responsible for the disease which had been 
referred to previously as ‘CBSD-like disease’. Consequently, the disease found in DRC cassava samples has 
been designated ‘Cassava Root Necrosis Disease’ or CRND. 

Keywords: NGS, PCR, Illumina HiSeq, CBSD-like, CRND 

1. Introduction 
Cassava (Manihot esculenta Crantz, family Euphorbiaceae) produces carbohydrate-rich storage roots, which are 
a staple food crop for approximately 800 million people worldwide (Food and Agriculture Organization, 2013). 
In Africa, cassava is the second most important food staple in terms of per capita calories consumed (Nweke, 
2004). 
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The RNA pellet was then washed in 700 ml of 70% ethanol and the tubes vortexed briefly before being 
incubated at -20 °C for at least 10 min. The tubes were then centrifuged for 5 min at 13,000 rpm. The ethanol 
was then removed and the pellet was air-dried. Finally the dried RNApellet were re-suspended in 100 μl 
1XTE/sterilized double distilled H20 on ice for about 30 min and stored at -20 °C before use. 

2.4 cDNA Library Preparation and Illumina Sequencing (Ndunguru et al., 2015) 

Total RNA extracts that presented 260/280 and 260/230 purity indices equal to or greater than 2.0 and integral 
RNA in electrophoresis and Bioanalyzer measurements (RIN > 8) were selected. The cDNA libraries were 
prepared from 1 μg of total RNA using the IlluminaTruSeq Stranded Total RNA Sample Preparation kit with 
Ribo-ZeroTM Plant according to the manufacturer’s instructions (Illumina, San Diego, California). Briefly, after 
rRNA depletion and RNA fragmentation, first and second strand cDNA was synthesized, adapters were ligated to 
the 50 and 30 ends of the fragments and the fragments enriched by PCR. cDNA libraries final size and 
concentration of each library was estimated using a Bioanalyzer (Agilent, Santa Clara, CA, USA) and the Qubit 
(Invitrogen, Carlsbad, CA, USA), respectively. Ten nM library pools were prepared by mixing the libraries to 
achieve an equal molar concentration of each. Libraries were normalized, pooled and sequenced using a 2 × 300 
cycle PE V3 Illumina kit. Paired end reads were generated using the Illumina MiSeq System at the Biosciences 
Eastern and Central Africa-International Livestock Research Institute (BECA-ILRI) Hub in Nairobi, Kenya. 

2.5 De Novo Sequence Assembly and Mapping (Ndunguru et al., 2015) 

For each sample, reads were first trimmed using CLC Genomics Workbench 6.5 (CLCGW) (CLC Bio) with the 
quality scores limit set to 0.01, maximum number of ambiguities to two and removing any reads with < 30 
nucleotides (nt). Contigs were assembled using the de novo assembly function of CLCGW with automatic word 
size, automatic bubble size, minimum contig length 500, mismatch cost two, insertion cost three, deletion cost 
three, length fraction 0.5 and similarity fraction 0.9. Contigs were sorted by length and the longest subjected to a 
BLAST search (blastn and blastx). In addition, reads were also imported into Geneious 6.1.6 (Biomatters) and 
provided with reference sequences obtained from Genbank. 

2.6 Library Preparation and Illumina Sequencing 

Total RNA and DNA extractions was carried out in the UWA from FTA samples and were sent to the Australian 
Genome Research Facility of the UWA for library preparation and sequencing on an Illumina HiSeq 2500.  

2.7 Sequences Analysis 

For each sample, reads were first trimmed using CLC Genomics Workbench 6.5 (CLCGW) (CLC Bio) with the 
following parameters: quality scores limit set to 0.01, maximum number of ambiguities set to twoand removal of 
any reads with < 30 nucleotides. Contigs were assembled using the de novo assembly function of CLCGW with 
automatic word size, automatic bubble size, minimum contig length 500, mismatch cost two, insertion cost three, 
deletion cost three, length fraction 0.5 and similarity fraction 0.9. Contigs were sorted by length and the longest 
subjected to a BLAST search (blastn and blastx) (Altschul et al., 1990). In addition, reads were also imported 
into Geneious 6.1.6 (Drummond et al., 2010) (Biomatters) and provided with reference sequences obtained from 
Genbank (NC012698 for CBSV, GQ329864 for CBSV-T and NC014791 for UCBSV). These methods have been 
used previously for the successful recovery of whole CBSV and UCBSV genome sequences (Ndunguru et al., 
2015; Alicai et al., 2016; Ateka et al., 2017). 

Mapping was performed using Kaiju software with minimum overlap 10%, minimum overlap identity 80%, 
allow gaps 10% and fine tuning set to iterate up to 10 times.  
While recent taxonomic classification programs achieve high speed by comparing genomic k-mers, they often 
lack sensitivity for overcoming evolutionary divergence; these results in large fractions of the metagenomic 
reads remaining unclassified. Kaiju is a novel metagenome classifier, which finds maximum (in-) exact matches 
on the protein level using the Burrows-Wheeler transform (Menzel et al., 2016). 

It has been shown that that Kaiju classifies reads with higher sensitivity and similar precision compared with 
current k-mer-based classifiers, especially in genera that are under-represented in reference databases. It has also 
been demonstrated that Kaiju classifies up to 10 times more reads in real metagenomes. Kaiju can also process 
millions of reads per minute and can run on a standard PC (Menzel et al., 2016). 

3. Preliminary Results and Discussion 
After trimming and assembling NGS data outputs using CLC workbench and Geneious software, sequences were 
processed using the Kaiju and outputs are presented in Figures 4 and 5 below. The bioinformatic processes and 



jas.ccsenet.

analyses d
samples. H

Samples 1
which wer
asymptom

 

 

org 

did not find e
However, a num

-10, which we
re collected o

matic plants. 

Figure 4. Exa

evidence of an
mber of bacter

ere collected o
on apparently 

ample of a sam

Figure 5. Lac

Journal of A

ny virus (incl
rial and fungal

on diseased pl
asymptomatic

mple results sh
identified u

ck of viruses in

Agricultural Sci

110 

luding known
taxa were reco

ants, presented
c plants prese

owing list of m
using Kaiju sof

n all tested sam

ience

CBSD viruse
orded. 

d fungi and ba
ented only ba

microorganism
ftware 

mples (Kayju so

es) in our sym

acteria while s
acteria. No fun

ms (bacteria and

oftware) 

Vol. 12, No. 3;

mptomatic cas

samples 11 an
ngi were foun

 
d fungi)  

2020 

ssava 

d 12, 
nd in 

 



jas.ccsenet.org Journal of Agricultural Science Vol. 12, No. 3; 2020 

111 

The figure 5 shows that viral sequences were quantified at 0.5%.  

The list of all microorganisms identified in all 12 samples and those suspected to play a pathogenic role in plant 
diseases according to the literature are presented in Tables 2 and 3 below.  

 

Table 2. Bacteria and fungi identified through NGS in all 12 samples 

Microorganisms identified Classification 

Acremonium chrysogenum Fungus 
Aspergillus niger Fungus 
Aspergillus sp. Fungus 
Aspergillus sydowii Fungus 
Aspergillus versicolor Fungus 
Diaporthehelianthi Fungus 
Diaportheampelina Fungus 
Diaporthehelianthi Fungus 
Dickeya zeae Fungus 
Diplodia sp. Fungus 
Diplodia orticola Fungus 
Diplodia serata Fungus 
Erwinia sp. Fungus 
Fusarium sp. Fungus 
Macrophomina parvum Fungus 
Macrophominaphaseolina Fungus 
Neofusicoccum parvum Fungus 
Pseudomonas fluorenscens Bacteria 
Pseudomonas libanensis Bacteria 
Pseudomonas aeruginosa Bacteria 
Pseudomonas tolaasii Bacteria 
Penicillium brasiliarum Fungus 
Penicillium chrysogenum Fungus 
Penicillium decumbens Fungus 
Penicillium digitatum Fungus 
Penicillium expansum Fungus 
Penicillium marneffei Fungus 
Penicillium steckii Fungus 
Pestalotiopsis sp. Fungus 
Pestalotiopsisfici Fungus 
Pseudomonas aeroginosa Bacteria 
Pseudomonas brassicacearum Bacteria 
Pseudomonas dioxanivorans Bacteria 
Pseudomonas fluorecens Bacteria 
Pseudomonas fuscovaginae Bacteria 
Pseudomonas mendocina Bacteria 
Pseudomonas pseudoalcaligenes Bacteria 
Pseudomonas syringae Bacteria 
Pseudomonas tolaasii Bacteria 
Pseudoxanthomonas sp. Bacteria 
Pseudoxanthomonas spadix Bacteria 
Sordariomycetidae Bacteria 
Xanthomonas sp. Bacteria 
Xanthomonas citri Bacteria 
Xanthomonas euvesicatoria Bacteria 
Xanthomonas phaseoli Bacteria 
Xanthomonas sacchari Bacteria 
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Table 3. Plant pathogenic microorganisms among list of bacteria and fungi identified through NGS—according 
to literature review 

Microorganisms 

Diplodiaseriata 

Diplodiacorticola 

Macrophominaphaseolina 

Neofusicoccum parvum 

Diaporthehelianthi 

Diaportheampelina 

Pestalotiopsis 

 

Neofusicoccum parvum is the predominant species within the Botryosphaeriaceae. Several Botryosphaeriacea 
species are important grapevine pathogens causing dieback and decline worldwide, and in recent years they have 
been recognized as causing serious problems in New Zealand vineyards (Baskarathevan et al., 2012).  

Diplodia corticola A.J.L. Philips, Alves et Luque is a well-known canker pathogen of oak (Quercus spp.) that is 
contributing to the decline of oaks in the Mediterranean region (Alves et al., 2004). Recently, the pathogen has 
been affecting Quercus spp. in California, Vitis vinifera in California and Texas (Lynch et al., 2010; Úrbez-Torres 
et al., 2009; Úrbez-Torres et al., 2010), and live oak (Q. virginiana Mill.) in Florida (Dreaden et al., 2011).  

Diplodia seriata (= Botryosphaeriaceaeobtusa) and Neofusicoccum parvum (Pennycook & Samuels) Crous, are 
the most common pathogens associated with grapevine dieback worldwide (Auger et al., 2004; Larignon et al., 
2001; Phillips, 2002, Taylor et al., 2005; Úrbez-Torres et al., 2006; Úrbez-Torres et al., 2006; Van Niekerk et al., 
2004).  

Species of Diaporthe and their Phomopsis asexual states have broad host ranges and are widely distributed, 
occurring as plant pathogens, endophytes or saprobes, but also as pathogens of humans and other mammals 
(Webber & Gibbs, 1984; Carroll, 1986; Boddy & Griffith, 1989; Rehner & Uecker, 1994; Garcia-Reyne et al., 
2011; Udayanga et al., 2011). 

Diaporthe sp. are responsible for diseases on a wide range of plants hosts, some of which are economically 
important worldwide, causing root and fruit rots, dieback, cankers, leaf spots, blights, decay and wilt (Uecker, 
1988; Mostert et al., 2001a; van Rensburg et al., 2006; Santos et al., 2011; Thompson et al., 2011).  

More researches are currently ongoing and each suspected microorganisms above needs to be confirmed by the 
Koch Postulates assays as causative pathogen(s) of CRND in western DRC.  

Isolations of bacteria and fungi are currently ongoing with the partnership of the Plant Clinic of Kinshasa. 
Microorganisms that will be isolated from cassava roots necrotic tissues will be genetically characterized and 
sequenced.  

Koch Postulates trials will be done with the involvement of the DSMZ (Deutsche Sammlung von 
Mikroorganismen und Zellkulturen) in Germany. 

It is possible that the CRND root necrosis disease could be caused by the action of a bacterium-fungus complex.  

The disease could be initiated by an initial attack of bacteria and root necrotic symptoms externalized by a 
secondary attack of fungi. Further studies are required to confirm or refute this hypothesis.  

4. Conclusion and Perspectives 
This study points to the apparent absence of CBSV in western region of DRC and suggests that CRND could be 
caused by other microorganisms such as bacteria, fungi or a combination of both. There appear to be two distinct 
diseases, namely CRND and CBSD which have similar root symptoms but different stem and foliar symptoms. 

Since 2004, CBSD has been spreading from East Africa to Central Africa and was confirmed in 2012 in eastern 
DRC; it is expected to spread to western DRC and on to West Africa. At the same time, CRND is spreading from 
western DRC towards West Africa and eastern DRC.  

If no control measures (quarantine, etc.) are put in place, there is a strong possibility that both diseases will 
spread to West Africa. Should this event cause cases of infections of both diseases, the results are likely to mean 
devastating cassava root crop losses and significant economic impacts on farmers’ livelihoods. Ultimately, this 
has serious implications for food security in Central Africa. 
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We consider that further research on CRND pathogens identification is paramount. Koch’s Postulates on isolated 
microorganisms from diseased plants and other biological assays will help to elucidate the causal pathogens of 
this disease. Information on disease etiology will allow for future disease epidemiology and genetic disease 
resistance research. 
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