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Abstract

Cassava is consumed in the Democratic Republic of Congo (DRC) as a staple food for the majority of the
Congolese population. This crop is used in several forms: as fufis, chikwangue and pondu; cassava leaves are the
most consumed vegetable in the country.

In 2002, cassava root symptoms similar to cassava brown streak disease (CBSD) were reported for the first time
in western DRC. PCR assays, using primers specific to Cassava brown streak virus (CBSV), failed to detect or
identify any viral pathogens in diseased cassava samples from western DRC. Therefore, next generation
sequencing (NGS) techniques were used as they are able to sequence full organism genomes and are widely used
for the identification of pathogens responsible for new diseases. The main objective of this study was to identify
the pathogens causing root necrosis in western DRC.

Whatman®FTA™ cards were used to collect 12 cassava leaf samples from plants with symptoms indicative of
very severe root necrosis, as well as two asymptomatic samples. These 12 samples were sent to Australia at the
University of Western Australia in Perth for next generation sequencing (NGS) using the Illumina HiSeq
platform.

Additional bioinformatics tools included Geneious, CLC workbench, ParaKraken and Kaijou software for short
DNA sequences. No viruses (including CBSV) were found in any of the DRC samples. These preliminary results
confirm all the previous negative results obtained using PCR and CBSV primers. However, NGS analyses did
reveal the presence of a number of bacterial and fungal taxa. These will require further investigation and tests
such as the Koch Postulates, to establish their specific pathogenic role in cassava.

This is the first scientific evidence that no currently known virus is responsible for the disease which had been
referred to previously as ‘CBSD-like disease’. Consequently, the disease found in DRC cassava samples has
been designated ‘Cassava Root Necrosis Disease’” or CRND.

Keywords: NGS, PCR, Illumina HiSeq, CBSD-like, CRND
1. Introduction

Cassava (Manihot esculenta Crantz, family Euphorbiaceae) produces carbohydrate-rich storage roots, which are
a staple food crop for approximately 800 million people worldwide (Food and Agriculture Organization, 2013).
In Africa, cassava is the second most important food staple in terms of per capita calories consumed (Nweke,
2004).
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Cassava (Manihot esculenta) production is important to the economy of the Democratic Republic of Congo
(DRQ). It is one of the country’s principal crops, with per capita consumption of 353 kg per year, which is the
highest in the world (Mbago & Lotombe, 2017). Zaire, now DRC, was the world’s largest consumer of cassava
with Republic of Congo ranked second in 1996 (Dufour et al., 1996).

Storage roots are used as a fresh source of carbohydrates and the flour derived from the processed roots is
consumed as an everyday-food, sold in local markets or used in several industrial food products (Hillocks &
Thresh, 2002). Recent research has suggested that, in comparison to other staple food crops, cassava may be
highly resilient to climate change and could provide food security opportunities for Africa (Jarvis et al., 2012).

Cassava production of in East and Central Africa is severely constrained by two viral diseases, cassava mosaic
disease (CMD) and cassava brown streak disease (CBSD). Together, it is estimated that these diseases cause
annual losses of US$1 billion (IITA, 2014b) and adversely affect food security in the region (Patil et al., 2015).
In 2004, CBSD, which had been thought to be confined to coastal lowlands, was found at altitudes above 1000m
above sea level (Alicai et al., 2007). Infections of cassava plants showing CBSD symptoms at higher altitudes in
Uganda were confirmed by RT-PCR (Alicai et al., 2007). There have since been additional CBSD reports from
Burundi (Bigirimana et al., 2011), Rwanda (FAO, 2011), eastern DRC (Mulimbi et al., 2012), South Sudan
(Alicai et al., 2017) and Mayotte Island (Roux-Cuvelier et al., 2014).

CBSD is caused by a single-stranded RNA virus, family Potyviridae; genus Ipomovirus (Mongeret al., 2001a).
Two genetically-distinct strains of CBSV were recognized in East Africa (Mbanzibwa et al., 2009). These were
shown to be two distinct species, namely Cassava brown streak virus (CBSV) and Ugandan cassava brown
streak virus (UCBSV) (Monger et al., 2010).

Both CBSV and UCBSYV are transmitted by the whitefly species complex Bemisia tabaci Gennadius in the field
(Mware et al, 2019) and through the propagation of infected cuttings used for planting. CBSD was known to be
endemic in coastal East Africa and in parts of Malawi until recently when outbreaks were reported in Uganda,
western Tanzania and Kenya. Other countries where CBSD has been reported include Mozambique, Rwanda,
Burundi and in isolated parts of the DRC (Ndunguru et al., 2015). The strains of Cassava brown streak virus
cause economic losses of up to $100 million USD annually (Ndunguru et al., 2015).

In the early 2000s, cassava root necrosis (Figure 1) similar to that caused by CBSD was first reported in the
western provinces of DRC (Kinshasa and Kongo Central) by Mahungu et al. (2003).To date, diagnosis through
PCR has been unsuccessful in detecting any known potential causal agent for the observed symptoms. Thus, up
to now, the disease has been referred to as ‘CBSD-like disease’ (Bakelana et al., 2019a).

Figure 1. Typical root necrosis of CRND observed in western DRC

In November 2018, in Kinshasa during the drafting meeting of the DRC cassava viral disease response plan, one
of the recommendations was that the term ‘CBSD-like’ should no longer be used, but that the term Cassava Root
Necrosis Disease (CRND) should be used instead.

This recommendation was also reminded during the scientific day on diseases and pests of cultivated plants in
DRC. This scientific day was organized on August 3rd by the Plant Clinic of Kinshasa.

This name change was based on the results of NGS analysis undertaken in this study. This analysis did not find
evidence of any virus (including known CBSD viruses) in our symptomatic cassava samples.
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Several attempts have been undertaken since 2004 to identify the causative agent for CRND in western DRC,
using cassava leaf samples (including those from plants showing very severe symptoms)with no success to date
(Bakelana et al., 2019a).

Molecular diagnosis results from five different laboratories, using PCR primers specific for the two known
CBSVs (CBSV and UCBSV), produced negative results. This suggested that the causal agent of the CBSD-like
disease in western DR Congo might be different from those known at present (Bakelana et al., 2019a).
Conventional molecular methods have their limitations—as indicated by Adams et al. (2009) who indicated that
real-time PCR may be too specific or not broad enough to successfully detect all the known variability within
virus species and thus resulting in false negatives. With the advent of next generation, high-throughput,
sequencing platforms (NGS), the metagenomic sequencing of diseased cassava plants to identify plant viruses
has now become a widely-used method (Adams et al., 2009; Kreuze et al., 2019).

Despite the absence of typical CBSD foliar and stem symptoms and a failure of existing test methods to identify
potential causal viral agents in diseased plants in western DRC, the project considered that it was still likely that
CBSD viruses were spreading from East to Central Africa and causing this disease. It seemed feasible that other
strains of CBSD—unidentified to date—might be responsible for these disease symptoms. Therefore, the aim of
this study was to search for the causal agent using a broad diagnostic tool—that is, one not designed against
specific or known targets.

In this paper, we report the first use of next generation sequencing to analyze the symptomatic cassava leaf
samples from DRC. Based on the NGS results, we also propose that non-viral causal agents may be responsible
for the symptoms exhibited in our cassava plant samples. Consequently, we are using the name ‘Cassava root
necrosis disease’ and its acronym ‘CRND’ within this manuscript to refer to this disease.

2. Materials and Methods

2.1 Field Sample Collection for NGS Analysis

Figure 2. Cassava root of plants used for leaf sampling on FTA™ cards

Cassava fields (with plants more than 16 months old) in the 2 localities considered hotspots (ref) in western DRC
were surveyed. Leaf material from plant with root necrosis was collected (Figures 2) on FTA™ cards.

A total of 12 leaf samples (Table 1) were collected from plants. They were crushed onto FTA™ cards according
to the manufacturers’ protocol in order to extract their DNA.

Cassava leaf samples were collected at Mvuazi research center and Lukuakua village on 29 and 30 November
2016.

Leaves samples were sampled according to Rwegasira et al. (2011) who found that the most suitable tissue
samples for CBSV-detection were young tender leaves, youngest symptomatic leaves and the non-necrotic
storage root tissue. The CBSD viruses were not detected from root necrotic tissues.
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Map showing the two localities where cassava samples were collected NGS analysis
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Figure 3. Hotspot disease locations where samples were collected

Table 1. Leaf samples details

Sample ID Genotype Location Status

1 Mputa Mvuazi Diseased plants

2 Mputa Mvuazi Diseased plants

3 Mputa Mvuazi Diseased plants

4 Mputa Mvuazi Diseased plants

5 Mputa Mvuazi Diseased plants

6 Mvuazi Lukuakua Diseased plants

7 Mvuazi Lukuakua Diseased plants

8 RAV Lukuakua Diseased plants

9 RAV Lukuakua Diseased plants

10 Mputa Lukuakua Diseased plants

11 RAV Lukuakua Apparently healthy plants
12 TME 419 Lukuakua Apparently healthy plants

The 12 FTA™ sample cards, previously labeled, were shipped to the University of Western Australia (UWA) in
Perth to complete the DNA extraction and for subsequent NGS processing.

2.2 Symptom Assessment

A symptom severity score was then recorded for the root of each plant sampled, using the 1-to-5 scoring method
described in Hillocks and Thresh (2000). Root necrosis severity was assessed as follows: 1 = apparently healthy
root; 2 = less than 2% necrotic tissue; 3 = 2-5% necrotic tissue; 4 = 5-50% necrotic tissue; 5 = more than 50%
necrotic tissue.

2.3 RNA Extraction (Ndunguru et al., 2015)

RNA was extracted from approximately 100 mg of cassava leaf using the CTAB (cetyltrimethyl ammonium
bromide). The leaves were ground in a mortar containing 1 ml extraction buffer (2.0% (w/v) CTAB, 2.0 M NaCl,
2.0% PVP, 0.5M EDTA, 1 M Tris-HCl and 0.2% B-mer-captoethanol (added immediately before use)). Then 750
pl of the extract was transferred into a 1.5 ml micro-centrifuge tube and incubated at 65 °C for 15 min while
shaking vigorously several times. The extract was then mixed with an equal volume (750 pl) of chloroform:
isoamyl alcohol (24:1); vortexed briefly and centrifuged (Hettich Centrifugen, D-78532, Germany) at 12,000
rpm for 10 min at 4 °C. The top aqueous solution (500 pl) was transferred into new micro-centrifuge tubes to
which 0.6 vol (300 pl) cold isopropanol was added. The content was then incubated at -20 for at least 10 min
followed by centrifugation (Hettich Centrifugen, D-78532, Germany) at 13,000 rpm for 10 min at 4 °C and the
supernatant was discarded.
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The RNA pellet was then washed in 700 ml of 70% ethanol and the tubes vortexed briefly before being
incubated at -20 °C for at least 10 min. The tubes were then centrifuged for 5 min at 13,000 rpm. The ethanol
was then removed and the pellet was air-dried. Finally the dried RNApellet were re-suspended in 100 pl
1 XTE/sterilized double distilled H20 on ice for about 30 min and stored at -20 °C before use.

2.4 ¢cDNA Library Preparation and Illumina Sequencing (Ndunguru et al., 2015)

Total RNA extracts that presented 260/280 and 260/230 purity indices equal to or greater than 2.0 and integral
RNA in electrophoresis and Bioanalyzer measurements (RIN > 8) were selected. The cDNA libraries were
prepared from 1 pg of total RNA using the [lluminaTruSeq Stranded Total RNA Sample Preparation kit with
Ribo-Zero™ Plant according to the manufacturer’s instructions (Illumina, San Diego, California). Briefly, after
rRNA depletion and RNA fragmentation, first and second strand cDNA was synthesized, adapters were ligated to
the 50 and 30 ends of the fragments and the fragments enriched by PCR. cDNA libraries final size and
concentration of each library was estimated using a Bioanalyzer (Agilent, Santa Clara, CA, USA) and the Qubit
(Invitrogen, Carlsbad, CA, USA), respectively. Ten nM library pools were prepared by mixing the libraries to
achieve an equal molar concentration of each. Libraries were normalized, pooled and sequenced using a 2 x 300
cycle PE V3 Illumina kit. Paired end reads were generated using the Illumina MiSeq System at the Biosciences
Eastern and Central Africa-International Livestock Research Institute (BECA-ILRI) Hub in Nairobi, Kenya.

2.5 De Novo Sequence Assembly and Mapping (Ndunguru et al., 2015)

For each sample, reads were first trimmed using CLC Genomics Workbench 6.5 (CLCGW) (CLC Bio) with the
quality scores limit set to 0.01, maximum number of ambiguities to two and removing any reads with < 30
nucleotides (nt). Contigs were assembled using the de novo assembly function of CLCGW with automatic word
size, automatic bubble size, minimum contig length 500, mismatch cost two, insertion cost three, deletion cost
three, length fraction 0.5 and similarity fraction 0.9. Contigs were sorted by length and the longest subjected to a
BLAST search (blastn and blastx). In addition, reads were also imported into Geneious 6.1.6 (Biomatters) and
provided with reference sequences obtained from Genbank.

2.6 Library Preparation and Illumina Sequencing

Total RNA and DNA extractions was carried out in the UWA from FTA samples and were sent to the Australian
Genome Research Facility of the UWA for library preparation and sequencing on an Illumina HiSeq 2500.

2.7 Sequences Analysis

For each sample, reads were first trimmed using CLC Genomics Workbench 6.5 (CLCGW) (CLC Bio) with the
following parameters: quality scores limit set to 0.01, maximum number of ambiguities set to twoand removal of
any reads with < 30 nucleotides. Contigs were assembled using the de novo assembly function of CLCGW with
automatic word size, automatic bubble size, minimum contig length 500, mismatch cost two, insertion cost three,
deletion cost three, length fraction 0.5 and similarity fraction 0.9. Contigs were sorted by length and the longest
subjected to a BLAST search (blastn and blastx) (Altschul et al., 1990). In addition, reads were also imported
into Geneious 6.1.6 (Drummond et al., 2010) (Biomatters) and provided with reference sequences obtained from
Genbank (NC012698 for CBSV, GQ329864 for CBSV-T and NC014791 for UCBSV). These methods have been
used previously for the successful recovery of whole CBSV and UCBSV genome sequences (Ndunguru et al.,
2015; Alicai et al., 2016; Ateka et al., 2017).

Mapping was performed using Kaiju software with minimum overlap 10%, minimum overlap identity 80%,
allow gaps 10% and fine tuning set to iterate up to 10 times.

While recent taxonomic classification programs achieve high speed by comparing genomic k-mers, they often
lack sensitivity for overcoming evolutionary divergence; these results in large fractions of the metagenomic
reads remaining unclassified. Kaiju is a novel metagenome classifier, which finds maximum (in-) exact matches
on the protein level using the Burrows-Wheeler transform (Menzel et al., 2016).

It has been shown that that Kaiju classifies reads with higher sensitivity and similar precision compared with
current k-mer-based classifiers, especially in genera that are under-represented in reference databases. It has also
been demonstrated that Kaiju classifies up to 10 times more reads in real metagenomes. Kaiju can also process
millions of reads per minute and can run on a standard PC (Menzel et al., 2016).

3. Preliminary Results and Discussion

After trimming and assembling NGS data outputs using CLC workbench and Geneious software, sequences were
processed using the Kaiju and outputs are presented in Figures 4 and 5 below. The bioinformatic processes and
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analyses did not find evidence of any virus (including known CBSD viruses) in our symptomatic cassava

samples. However, a number of bacterial and fungal taxa were recorded.
Samples 1-10, which were collected on diseased plants, presented fungi and bacteria while samples 11 and 12,
which were collected on apparently asymptomatic plants presented only bacteria. No fungi were found in

asymptomatic plants.

Figure 4. Example of a sample results showing list of microorganisms (bacteria and fungi)
identified using Kaiju software

29% of
a '
§ - <Y
P
23|
& o ‘,
Ell
k-1
8
£
§ Vimsuo.s%-
L root] 07% ||

Figure 5. Lack of viruses in all tested samples (Kayju software)
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The figure 5 shows that viral sequences were quantified at 0.5%.

The list of all microorganisms identified in all 12 samples and those suspected to play a pathogenic role in plant
diseases according to the literature are presented in Tables 2 and 3 below.

Table 2. Bacteria and fungi identified through NGS in all 12 samples

Microorganisms identified Classification
Acremonium chrysogenum Fungus
Aspergillus niger Fungus
Aspergillus sp. Fungus
Aspergillus sydowii Fungus
Aspergillus versicolor Fungus
Diaporthehelianthi Fungus
Diaportheampelina Fungus
Diaporthehelianthi Fungus
Dickeya zeae Fungus
Diplodia sp. Fungus
Diplodia orticola Fungus
Diplodia serata Fungus
Erwinia sp. Fungus
Fusarium sp. Fungus
Macrophomina parvum Fungus
Macrophominaphaseolina Fungus
Neofusicoccum parvum Fungus
Pseudomonas fluorenscens Bacteria
Pseudomonas libanensis Bacteria
Pseudomonas aeruginosa Bacteria
Pseudomonas tolaasii Bacteria
Penicillium brasiliarum Fungus
Penicillium chrysogenum Fungus
Penicillium decumbens Fungus
Penicillium digitatum Fungus
Penicillium expansum Fungus
Penicillium marneffei Fungus
Penicillium steckii Fungus
Pestalotiopsis sp. Fungus
Pestalotiopsisfici Fungus
Pseudomonas aeroginosa Bacteria
Pseudomonas brassicacearum Bacteria
Pseudomonas dioxanivorans Bacteria
Pseudomonas fluorecens Bacteria
Pseudomonas fuscovaginae Bacteria
Pseudomonas mendocina Bacteria
Pseudomonas pseudoalcaligenes Bacteria
Pseudomonas syringae Bacteria
Pseudomonas tolaasii Bacteria
Pseudoxanthomonas sp. Bacteria
Pseudoxanthomonas spadix Bacteria
Sordariomycetidae Bacteria
Xanthomonas sp. Bacteria
Xanthomonas citri Bacteria
Xanthomonas euvesicatoria Bacteria
Xanthomonas phaseoli Bacteria
Xanthomonas sacchari Bacteria
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Table 3. Plant pathogenic microorganisms among list of bacteria and fungi identified through NGS—according
to literature review

Microorganisms

Diplodiaseriata
Diplodiacorticola
Macrophominaphaseolina
Neofusicoccum parvum
Diaporthehelianthi
Diaportheampelina

Pestalotiopsis

Neofusicoccum parvum is the predominant species within the Botryosphaeriaceae. Several Botryosphaeriacea
species are important grapevine pathogens causing dieback and decline worldwide, and in recent years they have
been recognized as causing serious problems in New Zealand vineyards (Baskarathevan et al., 2012).

Diplodia corticola A.J.L. Philips, Alves et Luque is a well-known canker pathogen of oak (Quercus spp.) that is
contributing to the decline of oaks in the Mediterranean region (Alves et al., 2004). Recently, the pathogen has
been affecting Quercus spp. in California, Vitis vinifera in California and Texas (Lynch et al., 2010; Urbez-Torres
et al., 2009; Urbez-Torres et al., 2010), and live oak (Q. virginiana Mill.) in Florida (Dreaden et al., 2011).

Diplodia seriata (= Botryosphaeriaceaeobtusa) and Neofusicoccum parvum (Pennycook & Samuels) Crous, are
the most common pathogens associated with grapevine dieback worldwide (Auger et al., 2004; Larignon et al.,
2001; Phillips, 2002, Taylor et al., 2005; Urbez-Torres et al., 2006; Urbez-Torres et al., 2006; Van Niekerk et al.,
2004).

Species of Diaporthe and their Phomopsis asexual states have broad host ranges and are widely distributed,
occurring as plant pathogens, endophytes or saprobes, but also as pathogens of humans and other mammals
(Webber & Gibbs, 1984; Carroll, 1986; Boddy & Griffith, 1989; Rehner & Uecker, 1994; Garcia-Reyne et al.,
2011; Udayanga et al., 2011).

Diaporthe sp. are responsible for diseases on a wide range of plants hosts, some of which are economically
important worldwide, causing root and fruit rots, dieback, cankers, leaf spots, blights, decay and wilt (Uecker,
1988; Mostert et al., 2001a; van Rensburg et al., 2006; Santos et al., 2011; Thompson et al., 2011).

More researches are currently ongoing and each suspected microorganisms above needs to be confirmed by the
Koch Postulates assays as causative pathogen(s) of CRND in western DRC.

Isolations of bacteria and fungi are currently ongoing with the partnership of the Plant Clinic of Kinshasa.
Microorganisms that will be isolated from cassava roots necrotic tissues will be genetically characterized and
sequenced.

Koch Postulates trials will be done with the involvement of the DSMZ (Deutsche Sammlung von
Mikroorganismen und Zellkulturen) in Germany.

It is possible that the CRND root necrosis disease could be caused by the action of a bacterium-fungus complex.

The disease could be initiated by an initial attack of bacteria and root necrotic symptoms externalized by a
secondary attack of fungi. Further studies are required to confirm or refute this hypothesis.

4. Conclusion and Perspectives

This study points to the apparent absence of CBSV in western region of DRC and suggests that CRND could be
caused by other microorganisms such as bacteria, fungi or a combination of both. There appear to be two distinct
diseases, namely CRND and CBSD which have similar root symptoms but different stem and foliar symptoms.

Since 2004, CBSD has been spreading from East Africa to Central Africa and was confirmed in 2012 in eastern
DRC; it is expected to spread to western DRC and on to West Africa. At the same time, CRND is spreading from
western DRC towards West Africa and eastern DRC.

If no control measures (quarantine, etc.) are put in place, there is a strong possibility that both diseases will
spread to West Africa. Should this event cause cases of infections of both diseases, the results are likely to mean
devastating cassava root crop losses and significant economic impacts on farmers’ livelihoods. Ultimately, this
has serious implications for food security in Central Africa.
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We consider that further research on CRND pathogens identification is paramount. Koch’s Postulates on isolated
microorganisms from diseased plants and other biological assays will help to elucidate the causal pathogens of
this disease. Information on disease etiology will allow for future disease epidemiology and genetic disease
resistance research.
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