This paper proves the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles using computer-generated data based on Newton’s law of motion. To achieve this, this paper derives the probability density function ψ^ab(u_a;v_a,v_b) of the speed u_a of the particle with mass M_a after the collision of two particles with mass M_a in speed v_a and mass M_b in speed v_b. The function ψ^ab(u_a;v_a,v_b) is obtained through a unique procedure that considers (1) the randomness of the relative direction before a collision by an angle α. (2) the randomness of the direction after the collision by another independent angle β.

The function ψ^ab(u_a;v_a,v_b) is used in the equation below for the numerical iterations to get new distributions P_new^a(u_a) from old distributions P_old^a(v_a), and repeat with P_old^a(v_a)=P_new^a(v_a), where n_a is the fraction of particles with mass M_a.

P_new^1(u_1)=n_1 ∫_0^∞ ∫_0^∞ ψ^11(u_1;v_1,v’_1) P_old^1(v_1) P_old^1(v’_1) dv_1 dv’_1

+n_2 ∫_0^∞ ∫_0^∞ ψ^12(u_1;v_1,v_2) P_old^1(v_1) P_old^2(v_2) dv_1 dv_2

P_new^2(u_2)=n_1 ∫_0^∞ ∫_0^∞ ψ^21(u_2;v_2,v_1) P_old^2(v_2) P_old^1(v_1) dv_2 dv_1

+n_2 ∫_0^∞ ∫_0^∞ ψ^22(u_2;v_2,v’_2) P_old^2(v_2) P_old^2(v’_2) dv_2 dv’_2

The final distributions converge to the Maxwell-Boltzmann speed distributions. Moreover, the square of the root-mean-square speed from the final distribution is inversely proportional to the particle masses as predicted by Avogadro’s law.

]]>^i=1(z−1(Ai)) ≡ (z−1)^KZ^(n−K) that solely depends on K play a central role in this article. Just by choosing different values for z (real, complex, and random) and taking expectations of the various functions we provide other simple proofs of known results as well as obtain new results. The estimation algorithms for computing the expected elementary symmetric functions via least squares based on IFFT in the complex domain (z ∈ C) and least squares or linear programming in the real domain (z ∈ R) are noteworthy. Similarly, we we use Newton’s identities and some well known inequalities to obtain new results and inequalities. Then, we give an algorithm that exactly computes the distribution of K (i.e., q_k:= P(K = k), k = 0,1,...,n) for finite sample spaces. Finally, we give the conclusion and area for further research.]]>