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Abstract

We study a three-parameter model named the gamma generalized Pareto distribution. This distribution extends the gene-
ralized Pareto model, which has many applications in areas such as insurance, reliability, finance and many others. We
derive some of its characterizations and mathematical properties including explicit expressions for the density and quantile
functions, ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, generating function, Rényi
entropy and order statistics. We discuss the estimation of the model parameters by maximum likelihood. A small Monte
Carlo simulation study and two applications to real data are presented. We hope that this distribution may be useful for
modeling survival and reliability data.
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1. Introduction

The Pareto distribution is a very known statistical model, widely used for accommodate heavy-tailed distributions and
many of its applications in areas such as economics, biology and physics can be found in the literature (Alzaatreh, A., et
al., 2012). An important extension of the Pareto model is the generalized Pareto (GP for short) distribution. It is believed
that this distribution was pioneered by Pickands, J.(1975) in the extreme values context as the distribution of the sample of
surpluses above a certain high level. Some of its applications are addressed to areas such as insurance, reliability, finance,
meteorology and environment, among others (De Zea Bermudez, P. & Kotz, S., 2010). In a recent paper, (Nadarajah, S.
& Gupta, A. K., 2007) list many practical situations in which the GP distribution has been applied. Here, we mention
some of these: lifetime data analysis, coupon collector’s problem, analysis of radio audience data, analysis of rainfall time
series, regional flood frequency analysis, drought modeling, value at risk and measuring liquidity risk of open-end funds,
among others.

The cumulative distribution function (cdf) of the GP distribution is given by

G(x; ξ, σ) =

1 − (1 + ξx/σ)−1/ξ , if ξ , 0

1 − exp (−x/σ) , if ξ = 0.
(1)

The corresponding probability density function (pdf) is given by

g(x; ξ, σ) =

1/σ (1 + ξx/σ)−1/ξ−1 , if ξ , 0

1/σ exp (−x/σ) , if ξ = 0,
(2)

where ξ ∈ R and σ > 0 are the shape and scale parameters, respectively. The support of g(x; ξ, σ) is x > 0 for ξ ≥ 0 and
0 < x < −σ/ξ for ξ < 0.

Here, we adopt the same parametrization considered by (Song, J. & Song, S., 2012) for the GP distribution. The case
ξ = 0 reduces to the exponential distribution. In general, it is considered that the scale parameter has a direct effect on the
tails of this distribution, so that it has heavy-tailed when ξ > 0, medium-tailed when ξ = 0, and short-tailed when ξ < 0
(Song, J. & Song, S., 2012).

In recent years, several studies on generalizations of continuous distributions by introducing new parameters have been
considered. Particularly, great attention has been given to generalizations by using special generators (Tahir, M. & Nadara-
jah, S., 2013). In this context, some classes well-established in the literature are: the Marshall-Olkin class proposed by
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(Marshall, A. W. & Olkin, I., 1997), the beta class pioneered by (Eugene, N., et al., 2002), the gamma class proposed
by (Zografos, K. & Balakrishnan, N., 2009) and (Ristić, M. M. & Balakrishnan, N., 2012) and the Kumaraswamy class
defined by (Cordeiro, G. M. & De Castro, M., 2011).

For a given parent distribution with cdf G(x) and pdf g(x), x ∈ R, (Zografos, K. & Balakrishnan, N., 2009) proposed the
gamma-G family with an extra shape parameter a > 0 and cdf F(x) given by

F(x; a) =
γ
{
a,− log[1 −G(x)]

}
Γ(a)

, (3)

where

γ(a, z) =
∫ z

0
ta−1 e−tdt

denotes the lower incomplete gamma function and Γ(·) is the gamma function. The pdf of this family is given by

f (x; a) =
1
Γ(a)

{− log[1 −G(x)]
}a−1 g(x). (4)

Its hazard rate function (hrf) can be expressed as

τ(x; a) =
{− log[1 −G(x)]

}a−1 g(x)
Γ
{
a,− log[1 −G(x)]

} , (5)

where

Γ(a, z) =
∫ ∞

z
ta−1 e−tdt

denotes the upper incomplete gamma function. Note that Γ(a) = γ(a, z) + Γ(a, z). Several mathematical properties about
this class were studied by Nadarajah, S. (2013).

Due to its wide applicability, some recent works extended the GP distribution using special generators to obtain more
flexibility. Two important extensions are the beta GP and Kumaraswamy GP distributions investigated by ( Mahmoudi,
E., 2011) and (Nadarajah, S. & Eljabri, S., 2013), respectively. Based on a similar motivation, we study here another
promising extension of the GP distribution using the gamma generator called the gamma generalized Pareto (GGP for
short) distribution. We present some of its mathematical properties and emphasize its application in the context of survival
analysis.

The paper is organized as follows. In Section , we provide the cdf, pdf and hrf of the GGP distribution. Some important
results about transformations involving this distribution are addressed in Section . Some of its mathematical properties
are derived in Section including a mixture representation for its pdf and explicit expressions for the quantile function
(qf), ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, generating function, Rényi
entropy and order statistics. In Section , we use the maximum likelihood method to estimate the parameters of the GGP
distribution. A simulation study and two applications are addressed in Section . Section provides some concluding
remarks.

1.1 The GGP Distribution

Inserting (1) in equation (3), it gives the cdf of the GGP distribution

F(x; a, ξ, σ) =


γ
[
a, 1/ξ log

(
1 + ξx/σ

)]/
Γ(a), if ξ , 0

γ
(
a, x/σ

)/
Γ(a), if ξ = 0,

(6)

where ξ ∈ R, σ > 0 and a > 0. The range of x is x > 0 for ξ ≥ 0 and 0 < x < −σ/ξ for ξ < 0.

The corresponding pdf has the form

f (x; a, ξ, σ) =


1

σΓ(a)ξa−1

[
log (1 + ξx/σ)

]a−1 (1 + ξx/σ)−1/ξ−1 , if ξ , 0

1
σaΓ(a)

xa−1 exp (−x/σ) , if ξ = 0,

(7)
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and its hrf is given by

τ(x; a, ξ, σ) =



[
log

(
1 + ξx/σ

)]a−1(1 + ξx/σ
)−1/ξ−1

σξa−1 Γ
[
a , 1/ξ log (1 + ξx/σ)

] , if ξ , 0

xa−1 exp (−x/σ)
σa Γ

(
a , x/σ

) , if ξ = 0.

(8)

Setting ξ = 0 in equation (6), we have the gamma exponential distribution, which was studied by (Risti’c, M. M. &
Balakrishnan, N., 2012) and (Nascimento, D. C., 2014), whereas setting ξ < 0 leads to a support for X that depends on
unknown parameters. For this reason, we consider only the GGP model with ξ > 0 and positive support. We emphasize
that (Nadarajah, S.& Eljabri, S., 2013) gave the cdf (Dahiya, R. C., and Gurland, J., 1972) outside the context of the
gamma generator but they did not study any of its properties.

Henceforth, a random variable X having cdf (6) is denoted by X ∼ GGP(a, ξ, σ)
and we write F(x) = F(x; a, ξ, σ) in

order to simplify the notation. Plots of the pdf and hrf of X for selected parameter values are displayed in Figures and ,
respectively.
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Figure 1. Plots of the GGP density function for some parameter values.

2. Some Important Results

Theorem 2.1 Let X ∼ GGP(a, ξ, σ)
, where a, ξ and σ are positive real numbers. Then, the random variable Y =

log
[
log

(
1 + ξX/σ

)]
has the log-gamma distribution with parameters a and 1/ξ, namely Y ∼ log-gamma

(
a, 1/ξ

)
.

Proof. Consider the function h(x) = log
[
log

(
1 + ξx/σ

)]
and its inverse function h−1(x) =

σ [exp(ex) − 1]/ξ. The density function of Y, say fY (y), is obtained from the transformation method and equation (7)
gives

fY (y) =
1

Γ(a) ξa (ey)a−1 exp
(
ey + y

)
[exp(ey)]−1/ξ−1
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Figure 2. Plots of the GGP hrf for some parameter values.

=
1

Γ(a) ξa eya exp
(−ey/ξ

)
.

Further, if W ∼ gamma(a, 1/ξ), then log(W) ∼ log-gamma(a, 1/ξ) and its density function agrees with the last equation.
�

In the context of survival analysis, the Weibull distribution is commonly used to model data with monotone hrf. An
important generalization of the Weibull model is the gamma-exponentiated Weibull (GEW) distribution proposed by
(Pinho, L. G., et al., 2012). The GEW model can be characterized as follows.

Theorem 2.2 Let X be a random variable such that X ∼ GGP(a, ξ, σ)
, where a, ξ and σ are positive real numbers. Then,

the random variable

Y = −ξ log
(

ξX/σ
1 + ξX/σ

)
has the GEW distribution proposed by (Pinho, L. G., et al., 2012) with parameters δ = a, α = 1/ξ, k = 1 and λ = ξ. Using
their notation, we write Y ∼ GEW(a, 1/ξ, 1, ξ).

Proof. Consider the function h(x) = −ξ log
(

ξx/σ
1 + ξx/σ

)
. It is easy to obtain

h−1(x) =
σ e−x/ξ

ξ (1 − e−x/ξ)
and

dh−1(x)
dx

= − σ e−x/ξ

ξ2 (1 − e−x/ξ)2 .

From equation (7) and using the transformation method, the density function of Y, fY (y), can be expressed as

fY (y) =
1

Γ(a) ξa+1 e−y/ξ
(
1 − e−y/ξ

)1/ξ−1 [
− log

(
1 − e−y/ξ

)]a−1
.

The last equation agrees with equation (5) of (Pinho, L. G., et al., 2012) by taking δ = a, α = 1/ξ, k = 1 and λ = ξ. �
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Theorem 2.3 [Transformation] Let Y be a gamma distributed random variable with parameters a and 1/ξ. Then, the
random variable

X = σ(eY − 1)/ξ

has the GGP distribution with parameters a, ξ and σ.

3. Mathematical Properties

Many structural properties of the GGP distribution can be derived using the concept of exponentiated distributions. The
class of exponentiated distributions was initially studied by (Lehmann, E. L., 1953), who defined the so-called Lehmann
alternatives. However, this class has received special attention in the literature over the last twenty years and several
papers have been published. An excellent review of these publications is provided by (Tahir, M. & Nadarajah, S., 2013).
Here, we refer to the papers: (Mudholkar, G. S. & Srivastava, D. K., 1993) for exponentiated Weibull, (Gupta, R., et al.,
1998) for exponentiated Pareto, (Gupta, R. D. & Kundu, D., 2001) for exponentiated exponential, (Nadarajah, S. & Kotz,
S., 2003) for exponentiated Fréchet, (Nadarajah, S. & Gupta, A. K., 2007) for exponentiated gamma, (Carrasco, J. M. F.,
2008) for exponentiated modified Weibull and (Lemonte, A. J. & Cordeiro, G. M., 2011) for exponentiated generalized
inverse Gaussian distribution.

3.1 A Useful Representation

For any baseline cdf G(x), a random variable Y is said to have the exponentiated-G (“exp-G” for short) distribution with
power parameter α > 0, say Y ∼Gα, if its cdf and pdf are given by Hα(x) = G(x)α and hα(x) = α g(x)G(x)α−1, respectively.
Using a result pioneered by (Nadarajah, S., et al., 2013), we can express the density of the GGP distribution in terms of
exp-GP densities. Thus, for a real non-integer a > 0, equation (7) can be expressed as

f (x) =
∞∑

k=0

bk ha+k(x), (9)

where, the coefficients bk are given by

bk =
1

(a + k)Γ(a − 1)

(
k + 1 − a

k

) k∑
j=0

(−1) j+k p j,k

(a − 1 − j)

(
k
j

)
,

and the constants p j,k can be determined recursively by

p j,k = k−1
k∑

m=1

(−1)m [m( j + 1) − k]
(m + 1)

p j,k−m, (10)

for k = 1, 2, . . . and p j,0 = 1. Here, ha+k(x) denotes the exp-GP density with power parameter a + k given by

ha+k(x) =
(a + k)
σ

(1 + ξx/σ)−1/ξ−1
[
1 − (1 + ξx/σ)−1/ξ

]a+k−1
. (11)

Equation (9) reveals that the GGP density function is a linear combination of exp-GP densities. This result is important
to derive some mathematical properties of X such as the ordinary and incomplete moments, generating function and mean
deviations from those of the exp-GP distribution.

3.2 Quantile Function

The qf is obtained as the inverse of the cumulative function. It follows from equation (6) that the qf of theGGP distribution
can be expressed as

xu = Q(u) =
σ

ξ

{
exp[ ξ W−1(a, u)] − 1

}
, (12)

for 0 < u < 1, where W−1(a, u) is the qf of the gamma distribution with shape parameter a and scale parameter one
evaluated at u.
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The function W−1(a, u) can be expressed as a power series expansion (Cordeiro, G. M., 2013)

W−1(a, u) =
∞∑

i=0

ti [Γ(a + 1) u]i/a,

where t0 = 0, t1 = 1 and any coefficient ti+1 for i ≥ 1 is determined by the cubic recurrence equation

ti+1 =
1

i (a + i)

{ i∑
r=1

i−s+1∑
s=1

s (i − r − s + 2) tr ts ti−r−s+2

−
i∑

r=2

r [r − a + (a − 1)(i + 2 − r)] tr ti−r+2

}
,

where ∆(i) = 0 if i < 2 and ∆(i) = 1 if i ≥ 2. The first few coefficients are t2 = 1/(a+1), t3 = (3a+5)/[2(a+1)2(a+2)], . . .

It follows directly from (12) that the median of X is simply x1/2 = Q(1/2). Further, it is possible to generate GGP variates
by X = Q(U), where U is a uniform variate on the unit interval (0, 1).

Another important application of the qf is to obtain the measures of skewness and kurtosis. In this sense, two important
measures are the Bowley skewness (B) and the Moors kurtosis (M). The Bowley skewness (Kenney, J. F. & Keeping, E.
S., 1962), based on quartiles, and the Moors kurtosis (Moors, J. J., 1988), based on octiles, are given by

B =
Q(3/4) + Q(1/4) − 2Q(1/2)

Q(3/4) − Q(1/4)
and M =

Q(7/8) − Q(5/8) + Q(3/8) − Q(1/8)
Q(6/8) − Q(2/8)

,

respectively.

3.3 Moments

The nth moment of X can be determined based on (9) as

E(Xn) =
1
σ

∞∑
k=0

bk (a + k)
∫ ∞

0
xn (1 + ξx/σ)−1/ξ−1

[
1 − (1 + ξx/σ)−1/ξ

]a+k−1
dx.

Setting u = (1 + ξx/σ)−1/ξ, E(Xn) can be expressed as

E(Xn) =
(
σ

ξ

)n ∞∑
k=0

bk (a + k)
∫ 1

0
(u−ξ − 1)n(1 − u)a+k−1du.

Using the binomial expansion for (u−ξ − 1)n and the generalized binomial expansion for
(1 − u)a+k−1, the nth moment of X reduces to

E(Xn) =
(
σ

ξ

)n ∞∑
k,ℓ=0

n∑
i=0

(−1)ℓ+n−i (a + k) bk

(ℓ − iξ + 1)

(
n
i

)(
a + k − 1

ℓ

)
.

3.4 Generating Function

The moment generating function (mgf) of X can be obtained using the fact that the GGP density function is a linear
combination of exp-GP densities. Thus,

M(t) =
1
σ

∞∑
k=0

bk (a + k)
∫ ∞

0
etx (1 + ξx/σ)−1/ξ−1

[
1 − (1 + ξx/σ)−1/ξ

]a+k−1
dx.
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Setting u = (1 + ξx/σ)−1/ξ, M(t) can be expressed as

M(t) = e−
tσ
ξ

∞∑
k=0

bk (a + k)
∫ 1

0
exp(tσu−ξ/ξ)(1 − u)a+k−1du.

Using the generalized binomial expansion for (1 − u)a+k−1, M(t) reduces to

M(t) = e−
tσ
ξ

∞∑
k,i=0

(−1)i (a + k) bk

(
a + k − 1

i

) ∫ 1

0
exp(tσu−ξ/ξ) ui du.

Thus, it follows that (for t < 0)

M(t) =
e−

tσ
ξ

ξ

∞∑
k,i=0

(−1)i (a + k) bk

(
a + k − 1

i

) (
− ξ

tσ

)−(ℓ+1)/σ

Γ

[
− (1 + i)

ξ
,− tσ

ξ

]
.

3.5 Incomplete Moments

Frequently, in applied works it is of interest to know the nth incomplete moment of a random variable. The nth incomplete
moment of X is given by Tn(z) =

∫ z
−∞ xn f (x) dx, and using equation (9), we can write

Tn(z) =
1
σ

∞∑
k=0

bk (a + k)
∫ z

0
xn (1 + ξx/σ)−1/ξ−1

[
1 − (1 + ξx/σ)−1/ξ

]a+k−1
dx.

Setting u = (1 + ξx/σ)−1/ξ, Tn(z) reduces to

Tn(z) =
(
σ

ξ

)n ∞∑
k=0

bk (a + k)
∫ 1

t
(u−ξ − 1)n(1 − u)a+k−1du,

where t = (1 + ξz/σ)−1/ξ.

Using the binomial expansion for (u−ξ − 1)n and the generalized binomial expansion for
(1 − u)a+k−1, Tn(z) reduces to

Tn(z) =
(
σ

ξ

)n ∞∑
k,ℓ=0

n∑
i=0

(−1)ℓ+n−i (a + k) bk

(
1 − tℓ−iξ+1

ℓ − iξ + 1

) (
n
i

)(
a + k − 1

ℓ

)
. (13)

A particularly important case is the first incomplete moment. From equation (13), we have

T1(z) =
σ

ξ

∞∑
k,ℓ=0

(−1)ℓ (a + k) bk

(
1 − tℓ−ξ+1

ℓ − ξ + 1
− 1 − tℓ+1

ℓ + 1

) (
a + k − 1

ℓ

)
. (14)

An important application of equation (14) refers to the mean deviations of X about the mean and the median. These
quantities are defined by

δ1(X) = 2µ′1 F(µ′1) − 2 T1(µ′1) and δ2(X) = µ′1 − 2 T1(x1/2),
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respectively, where µ′1 = E(X), x1/2 is the median of X that follows from (12) as x1/2 = Q(1/2), F(µ′1) is easily obtained
from (6) and the quantities T1(µ′1) and T1(x1/2) are given by (14).

Equation (14) can also be used to determine the Bonferroni and Lorenz curves, which have several applications in eco-
nomics, reliability, demography and medicine. These curves are defined by B(π) = T1(q)/(πµ′1) and L(π) = T1(q)/µ′1,
where q = Q(π) is calculated by (12) for a given probability π.

3.6 Rényi Entropy

The Rényi entropy of X is given by

IR(γ) = log
(∫ ∞

0
f γ(x)dx

)
, (15)

where γ > 0, γ , 1 and f (x) is the pdf (7).

For a general cdf G(x) satisfying equation (3), (Nadarajah, S., et al., 2013) proved that∫ ∞

0
f γ(x)dx =

γ(a − 1)
Γγ(a)

∞∑
k=0

(
k − γ(a − 1)

k

) k∑
j=0

(−1) j+k p j,k

[γ(a − 1) − j]

(
k
j

)
Ik, (16)

where

Ik =

∫ ∞

0
G(x)γ(a−1)+kgγ(x)dx, (17)

and p j,k is defined by (10).

For the GP cdf, the integral given in equation (17) becomes

Ik =

∫ ∞

0

[
1 − (1 + ξx/σ)−1/ξ

]γ(a−1)+k [
1/σ (1 + ξx/σ)−1/ξ−1

]γ
dx

=
1
σγ

∫ ∞

0

(
1 + ξx/σ

)−γ(1/ξ+1)
[
1 − (1 + ξx/σ)−1/ξ

]γ(a−1)+k
dx.

Setting u =
(
1 + ξx/σ

)−1/ξ, the integral Ik can be expressed as

Ik =
1

σγ−1

∫ 1

0
(1 − u)γ(a−1)+k u(ξ+1)(γ−1)du

=
1

σγ−1

∞∑
ℓ=0

(−1)ℓ

ℓ + ξ(γ − 1) + γ

(
γ(a − 1) + k

ℓ

)
,

whenever ℓ + ξ(γ − 1) + γ , −1.

Then, equation (16) can be reduced to∫ ∞

0
f γ(x)dx =

γ(a − 1)
Γγ(a)σγ−1

∞∑
k=0

(
k − γ(a − 1)

k

) k∑
j=0

(−1) j+k p j,k

[γ(a − 1) − j]

(
k
j

)

×
∞∑
ℓ=0

(−1)ℓ

[ℓ + ξ(γ − 1) + γ]

(
γ(a − 1) + k

ℓ

)

=
γ(a − 1)
Γγ(a)σγ−1

∞∑
k,ℓ=0

k∑
j=0

(−1) j+k+ℓ pk, j

[γ(a − 1) − j][ℓ + ξ(γ − 1) + γ]

(
k
j

) (
γ(a − 1) + k

ℓ

)
. (18)

Then, from equations (15) and (18), the entropy of X can be given as

IR(γ) =
1

1 − γ log
[
γ(a − 1)
Γγ(a)σγ−1

∞∑
k,ℓ=0

k∑
j=0

(−1) j+k+ℓ pk, j

[γ(a − 1) − j][ℓ + ξ(γ − 1) + γ]
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×
(
k
j

)(
γ(a − 1) + k

ℓ

)]

=
log(γ) + log(a − 1) − γ log[Γ(a)] − (γ − 1) log(σ)

1 − γ

+ log


∞∑

k,ℓ=0

k∑
j=0

(−1) j+k+ℓ pk, j

[γ(a − 1) − j][ℓ + ξ(γ − 1) + γ]

(
k
j

) (
γ(a − 1) + k

ℓ

) ,
whenever ℓ + ξ(γ − 1) + γ , −1.

3.7 Order Statistics

Here, we derive an explicit expression for the density of the ith order statistic Xi:n, say fi:n(x), in a random sample of size
n from the GGP distribution. Using results by (Nadarajah, S., et al., 2013), we can write

fi:n(x) =
n−i∑
j=0

∞∑
r,k=0

m j,r,k ha( j+i)+r+k(x), (19)

where

m j,r,k =
(−1) j n!

(i − 1)! (n − i − j)! j!
(a + r) br f j+i−1,k

[a( j + i) + r + k]
,

and

f j+i−1,k = (k b0)−1
k∑

m=1

[m( j + i) − k] bm f j+i−1,k−m.

Here, ha( j+i)+r+k(x) denotes the pdf of the exp-GP distribution with power parameter
a( j + i) + r + k and it can be easily obtained by a reparameterization of (11).

Equation (19) reveals that the density of the ith order statistic of the GGP distribution is a mixture of exp-GP densities.
This equation can be used, for example, to obtain the moments and mgf of the GGP order statistics.

The sth moment of Xi:n is given by

E(Xs
i:n) =

∫ ∞

−∞
xs fi:n(x) dx

=

n−i∑
j=0

∞∑
r,k=0

m j,r,k

∫ ∞

0
xsha( j+i)+r+k(x)dx.

Using similar results to those presented in Section , we have

E(Xs
i:n) =

(
σ

ξ

)s n−i∑
j=0

∞∑
r,k,ℓ=0

s∑
q=0

(−1)ℓ+s−q
(
s
q

)(
a( j + i) + r + k − 1

ℓ

)
× [a( j + i) + r + k]

(ℓ − qξ + 1)
m j,r,k.

The mgf of Xi:n can be expressed as
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φ(t) =

∫ ∞

−∞
etx fi:n(x) dx

=

n−i∑
j=0

∞∑
r,k=0

m j,r,k

∫ ∞

0
etx ha( j+i)+r+k(x)dx,

which, using similar results to those presented in Section , reduces (for t < 0) to

φ(t) =
e−

tσ
ξ

ξ

n−i∑
j=0

∞∑
r,k,ℓ=0

(−1)ℓ [a( j + i) + r + k] m j,r,k

(
− ξ

tσ

)−(1+ℓ)/σ

×
(
a( j + i) + r + k − 1

ℓ

)
Γ

[
− (1 + i)

ξ
,− tσ

ξ

]
.

4. Estimation

In this section, we emphasize how to obtain the MLEs of the parameters a, ξ and σ of the GGP distribution. Let x1, . . . , xn

be a sample of size n from this distribution. The log-likelihood function for the vector of parameters θ⊤ = (a, ξ, σ)⊤ can
be expressed as

ℓ(θ) = −n(a − 1) log(ξ) − n log(σ) − n log[Γ(a)] + (a − 1)
n∑

i=1

log
[
log(zi)

]
−

(
1 +

1
ξ

) n∑
i=1

log(zi),

where zi = 1 + ξxi/σ.

The elements of the score vector are given by

∂ℓ(θ)
∂ξ
= −n(a − 1)

ξ
+

n∑
i=1

log(zi) −
(1 + ξ)
ξ2

n∑
i=1

zi − 1
zi
+

(a − 1)
ξ

n∑
i=1

zi − 1
zi log(zi)

,

∂ℓ(θ)
∂σ

= − n
σ
+

(1 + ξ)
ξσ

n∑
i=1

zi − 1
zi
+

(a − 1)
σ

n∑
i=1

zi − 1
zi log(zi)

,

∂ℓ(θ)
∂a
= −n log(ξ) − nψ(a) +

n∑
i=1

log[log(zi)],

where ψ(a) = d log[Γ(a)]/da and zi = 1 + ξxi/σ.

The MLE θ̂ of θ is obtained by solving simultaneously the nonlinear equations Uξ(θ) = 0, Uσ(θ) = 0 and Ua(θ) =
0. These estimators can be obtained numerically by maximizing the log-likelihood function by means of algorithms
for non-linear optimization. For confidence intervals and hypothesis tests, it is important to determine the observed
information matrix. Particularly, for the GGP distribution, the 3 × 3 observed information matrix is J(θ) = {−Urs}, where
Urs = ∂

2ℓ(θ)/(∂θr∂θs) for r, s ∈ {a, ξ, σ}. The elements of J(θ) are listed in the Appendix.

5. Applied Results

In this section, a simulation study and two applications to real data are considered. The parameter estimation was made
using the R software (www.r-project.org) by the maxLik package with simulated annealing method, which is useful for
finding a global maximum when the objective function has some local maximums.
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5.1 Simulation Study

Here, we present the results of a Monte Carlo simulation study, which was carried out to evaluate the performance of
the MLEs for the parameters a, ξ and σ of the GGP distribution in finite samples. The results are obtained from 10, 000
Monte Carlo replications. We take samples of sizes n = 100, 200, 300, 500 and 800. In the data generation process, we
consider equation (12) and the true parameters values a = 2, ξ = 0.5 and σ = 1.5.

In Table 1, we provide the means, standard error estimates, root mean square errors (RMSEs) and mean absolute errors
(MAEs) of â, ξ̂ and σ̂ for the GGP model. Based on the results, we can verify that the estimators are biased even for
moderate samples. Thus, the use of bias-correction techniques can improve the performance of these estimators in finite
samples.

Table 1. Means, standard error estimates, Biases RMSEs and MAEs of â, ξ̂ and σ̂ for the GGP model

n Parameter Mean Biases Standard Error RMSE MAE

100
a 2.4407 -0.4407 1.1535 1.2348 0.7749
ξ 0.4630 0.0370 0.1017 0.1082 0.0826
σ 1.5792 -0.0792 1.0401 1.0430 0.8041

200
a 2.2143 -0.2143 0.7554 0.7852 0.4733
ξ 0.4819 0.0181 0.0700 0.0723 0.0563
σ 1.5289 -0.0289 0.7084 0.7089 0.5549

300
a 2.1281 -0.1281 0.5321 0.5473 0.3476
ξ 0.4895 0.0105 0.0567 0.0577 0.0455
σ 1.5126 -0.0126 0.5604 0.5605 0.4419

500
a 2.0668 -0.0668 0.3432 0.3496 0.2463
ξ 0.4938 0.0062 0.0445 0.0449 0.0354
σ 1.5088 -0.0088 0.4308 0.4309 0.3415

800
a 2.0375 -0.0375 0.2440 0.2469 0.1859
ξ 0.4966 0.0034 0.0349 0.0350 0.0279
σ 1.5062 -0.0062 0.3376 0.3376 0.2689

5. 2 Application to Real Survival and Reliability Data

Here, we present two applications to real data to illustrate the potentiality of theGGPmodel. To compare the performance
of the GGP model, we use two generalizations of the GP distribution well-established in the literature. We consider
the four-parameter beta generalized Pareto (BGP) model proposed by (Mahmoudi, E., 2011) and the Kumaraswamy
generalized Pareto (KGP) model pioneered by (Nadarajah, S. & Eljabri, S., 2013). The density functions of the KGP
and BGP models are given by

πKGP(x; ξ, σ, a, b) =
ab
σ

z−1/ξ−1(1 − z−1/ξ)a−1[1 − (1 − z−1/ξ)a]b−1 (20)

and

πBGP(x; ξ, σ, α, β) =
z−β/ξ−1(1 − z−1/ξ)α−1

σB(α, β)
, (21)

respectively, where z = 1 + ξx/σ and B(·, ·) is the beta function.

Setting z−1/ξ = u in equation (20) corresponds to equation (15) of (Nadarajah, S.& Eljabri, S., 2013) with t = 0. Equation
(21) corresponds to the equivalent parameterization considered in equation (5) of (Mahmoudi, E., 2011) with µ = 0 and
−ξ in place of ξ.

The first data set was obtained in (Proschan, F., 1963) and corresponds to the time of successive failures of the air
conditioning system of jet airplanes. These data were also studied by (Dahiya, R. C. & Gurland, J., 1972; Gleser, L. J.,
1989; Gupta, R. D. & Kundu, D.,2001; Kuş, C., 2007), among others. The data are: 194, 413, 90, 74, 55, 23, 97, 50, 359,
50, 130, 487, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9 , 254, 493, 18, 209, 41, 58, 60, 48, 56, 87, 11, 102, 12, 5, 100, 14,
29, 37, 186, 29, 104, 7, 4, 72, 270, 283, 7, 57, 33, 100, 61, 502, 220, 120, 141, 22, 603, 35, 98, 54, 181, 65, 49, 12, 239,
14, 18, 39, 3, 12, 5, 32, 9, 14, 70, 47, 62, 142, 3, 104, 85, 67, 169, 24, 21, 246, 47, 68, 15, 2, 91, 59, 447, 56, 29, 176, 225,
77, 197, 438, 43, 134, 184, 20, 386, 182, 71, 80, 188, 230, 152, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27, 21, 16, 88,
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130, 14, 118, 44, 15, 42, 106, 46, 230, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35, 5, 82, 5, 61, 31, 118, 326, 12, 54, 36,
34, 18, 25, 120, 31, 22, 18, 156, 11, 216, 139, 67, 310, 3, 46, 210, 57, 76, 14, 111, 97, 62, 26, 71, 39, 30, 7, 44, 11, 63,
23, 22, 23, 14, 18, 13, 34, 62, 11, 191, 14, 16, 18, 130, 90, 163, 208, 1, 24, 70, 16, 101, 52, 208, 95.

Table presents some descriptive statistics for these data. In Table , we provide the MLEs (and the corresponding standard
errors in parentheses) of the fitted models and also the values of the following statistics: Akaike information criterion
(AIC), Bayesian information criterion (BIC) and consistent Akaike information criterion (CAIC). Based on these results,
we note that the GGP model has the lowest values of the AIC, BIC and CAIC statistics, so this model could be chosen as
the best model.

Table 2. Descriptives statistics for the air conditioning system of airplanes data

Statistic
Mean 93.141
Median 57
Variance 11398.471
Minimum 1
Maximum 603

Table 3. MLEs (standard errors in parentheses) and the AIC, BIC and CAIC statistics for the air conditioning system of
airplanes data

Distribution ξ̂ σ̂ â b̂ AIC BIC CAIC

GGP 0.482 24.386 1.745 - 2364.209 2374.292 2364.323
(0.070) (2.176) (0.117) -

BGP 9.889 1.452 19.200 24.535 2388.909 2402.354 2389.101

(0.574) (0.347) (0.609) (0.765)

KGP 5.419 1.019 8.887 36.257 2366.357 2379.802 2366.549

(0.317) (0.372) (0.953) (1.861)

Plots of the pdf and cdf of the fitted GGP, KGP and BGP models to the air conditioning system of airplanes data are
displayed in Figure . These plots seem to indicate that the fitted GGP model is the best one in terms of fit to the current
data.

Air conditioning system of airplanes
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Figure 3. (a) Plots of the fitted GGP, KGP and BGP densities; (b) Plots of the estimated cdfs of the GGP, KGP and
BGP models. .

The formal tests of the goodness-of-fit to the air conditioning system of airplanes data are given in Table . We consider
the values of the Kolmogorov-Smirnov (K-S), Cramér-von Mises (W∗) and Anderson-Darling (A∗) statistics. In general,
the best fit to the data refers to the model with the lowest value of these statistics. Based on these results, we conclude
that the fitted GGP model is superior to the other fitted models to these data.

152



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 3; 2017

Table 4. Goodness-of-fit tests for the GGP, BGP and KGP models for the air conditioning system of airplanes data

Model
Statistics

K-S W∗ A∗

GGP 0.053 0.093 0.660
BGP 0.089 0.321 2.166

KGP 0.067 0.095 0.699

The second data set was obtained from Murthy, D.(2004), and consists of the times between failures for repairable items:
1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46,
0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17. Table gives some descriptive statistics for these data. In Table , we
present the MLEs (and the corresponding standard errors in parentheses) of the fitted models and also the values of the
AIC, BIC and CAIC statistics. Based on these results, it is noted that the GGP model has the lowest values of the AIC,
BIC and CAIC statistics, so it could be chosen as the best model to the these data.

Table 5. Descriptives statistics for the times between failures

Statistic
Mean 1.543
Median 1.235
Variance 1.272
Minimum 0.110
Maximum 4.730

Table 6. MLEs (standard errors in parentheses) and the AIC, BIC and CAIC statistics for the times between failures

Distribution ξ̂ σ̂ â b̂ AIC BIC CAIC

GGP 0.028 0.698 2.100 - 85.252 89.455 86.175
(0.170) (0.449) (0.817) -

BGP 0.156 11.061 1.979 13.850 87.257 92.862 88.857

(1.960) (3.852) (0.460) (1.983)

KGP 1.119 4.972 1.917 14.432 87.283 92.888 88.883

(2.371) (4.817) (0.837) (12.687)

Plots of the fitted GGP, KGP and BGP models to the times between failures are displayed in Figure for the densities
and cumulative functions. Based on these plots, these models seem equivalent in terms of fit to the data. In Table , we
present formal goodness-of-fit tests to the times between failures. The values of the K-S, W∗ and A∗ statistics indicate
that the fitted GGP andKGP models are competitive models to these data, although the GGP model has less parameters.

Table 7. Goodness-of-fit tests for the GGP, BGP and KGP models for the times between failures

Model
Statistics

K-S W∗ A∗

GGP 0.065 0.018 0.134
BGP 0.066 0.018 0.140

KGP 0.070 0.017 0.128

In summary, we conclude that the fitted GGP model shows superior performance to other competitive fitted models for
two real data sets with the advantage of having less parameters.

6. Conclusion

In this paper, we study a three-parameter model named gamma generalized Pareto (GGP) distribution, which consists of
a major extension of the generalized Pareto (GP) distribution pioneered by (Pickands, J., 1975). We give some results
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Figure 4. (a) Plots of the fitted GGP, KGP and BGP densities; (b) Plots of the estimated cdfs of the GGP, KGP and
BGP models. .

connecting the GGP model with other well-established distributions in the literature, such as the gamma and log-gamma
distributions. We also provide several mathematical properties of the GGP model including explicit expressions for
the density and quantile functions, ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves,
generating function, Rényi entropy and order statistics. We discuss the maximum likelihood method to estimate the model
parameters and provide the elements of the score vector and the observed information matrix. We also present a Monte
Carlo simulation study to evaluate the performance of the maximum likelihood estimators for the GGP model. Finally,
two applications illustrate the potentiality of the GGP distribution to fit survival data.
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Appendix

We give below the elements of the observed information matrix of the GGP model:

∂2ℓ(θ)
∂ξ2 =

n(a − 1)
ξ2 − 2

ξ2

n∑
i=1

log(zi) −
(1 + ξ)
ξ3

n∑
i=1

(zi − 1)2

z2
i

+
2
ξ3

n∑
i=1

(zi − 1)
zi

− (a − 1)
ξ2

n∑
i=1

(zi − 1)2

z2
i log(zi)

(
1 +

1
log(zi)

)
,

∂2ℓ(θ)
∂σ2 =

n
2
− (a − 1)

σ2

n∑
i=1

 (zi − 1)2

[zi log(zi)]2 +
(zi − 1)2

z2
i log(zi)

− 2(zi − 1)
zi log(zi)


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+
(1 + ξ)
ξσ2

n∑
i=1

 (zi − 1)2

z2
i

− 2(zi − 1)
zi

 ,
∂2ℓ(θ)
∂ξ ∂σ

= − 1
ξ2σ

n∑
i=1

(zi − 1)
zi

− (1 + ξ)
ξ2σ

n∑
i=1

 (zi − 1)2

z2
i

− (zi − 1)
zi


+

(a − 1)
ξσ

n∑
i=1

 (zi − 1)2

[zi log(zi)]2 +
(zi − 1)2

z2
i log(zi)

− zi − 1
zi log(zi)


∂2ℓ(θ)
∂ξ ∂a

= −n
ξ
+

1
ξ

n∑
i=1

(zi − 1)
zi log(zi)

,

∂2ℓ(θ)
∂a ∂σ

= − 1
σ

n∑
i=1

(zi − 1)
zi log(zi)

,

∂2ℓ(θ)
∂a2 = −nψ′(a),

where ψ′(a) = ∂2 log[Γ(a)]/∂a2 and zi = 1 + ξxi/σ.
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