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Abstract 
In recent years, both research and industry have shown an increasing interest in developing reliable information 
retrieval (IR) systems that can effectively address the growing demands of users worldwide. In spite of the 
relative success of IR systems in addressing the needs of users and even adapting to their environments, many 
problems remain unresolved. One main problem is lexical ambiguity which has negative impacts on the 
performance and reliability of IR systems. To date, lexical ambiguity has been one of the most frequently 
reported problems in the Arabic IR systems despite the development of different word sense disambiguation 
(WSD) techniques. This is largely attributed to the limitations of such techniques in addressing the issue of 
linguistic peculiarities. Hence, this study addresses these limitations by exploring the reasons for lexical 
ambiguity in IR applications in Arabic as one step towards reliable and practical solutions. For this purpose, the 
performances of six search engines Google, Bing, Baidu, Yahoo, Yandex, and Ask are evaluated. Results indicate 
that lexical ambiguities in Arabic IR applications are mainly due to the unique morphological and orthographic 
system of the Arabic language, in addition to its diglossia and the multiple colloquial dialects where sometimes 
mutual intelligibility is not achieved. For better disambiguation and IR performances in Arabic, this study 
proposes that clustering models based on supervised machine learning theory should be trained to address the 
morphological diversity of Arabic and its unique orthographic system. Search engines should also be adapted to 
the geographic location of the users in order to address the issue of vernacular dialects of Arabic. They should 
also be trained to automatically identify the different dialects. Finally, search engines should consider all 
varieties of Arabic and be able to interpret the queries regardless of the particular language adopted by the user. 

Keywords: Arabic morphology, diglossia, information retrieval (IR), lexical ambiguity, word sense 
disambiguation (WSD) 
1. Introduction  
The recent years, research and industry have witnessed an increasing interest in developing reliable information 
retrieval (IR) systems that can effectively address the growing demands of users all over the world (Qi, Wang, & 
Shen, 2017; Zhang, 2016). In spite of the relative success of IR systems in addressing the needs of users and 
even adapting to their environments, many problems remain unresolved. One main problem is lexical ambiguity 
which has negative impacts on the performance and reliability of IR systems. It is even argued that lexical 
ambiguity is the most challenging problem for IR systems. This is because, in almost all languages, thousands of 
words have multiple connotations or meanings which need to be well considered in NLP applications. In English, 
for instance, over 80% of common English words have more than one dictionary entry, with some words having 
very many different definitions (Rodd, 2018). Hence, IR systems need to be trained to learn and process such 
words in order to achieve reliability and consistency. 

As expected, recent years have witnessed the development of various techniques for resolving the problem of 
lexical ambiguity in (IR) applications. These have been based on what is referred to as ‘word sense 
disambiguation’ (WSD). The assumption is that determining the sense or meaning of a given word is essential 
for successful natural language processing (NLP) applications including IR (Agirre & Edmonds, 2007; Jacobs, 
2014; Kwong, 2012; Mihalcea & Radev, 2011; Strzalkowski, 2013; Sumathy & Chidambaram, 2016; Zhekova, 
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2014). The WSD process is essential given that a great number of words have identical forms; moreover, they 
have different meanings when used in different contexts. This is technically known as polysemy. The problem 
with this linguistic feature, however, is that the perceived meaning of a word can vary greatly from one context 
to another (Ruhl, 1989). Readers/listeners, however, can quickly make use of contextual cues to select the most 
likely meaning when polysemous words are used within sentences and structures. Humans have the ability to 
reinterpret the sentence in the light of subsequent information. Evidence from brain imaging studies reveals the 
network of temporal and frontal brain regions that are known to be important for representing and processing 
ambiguous words (Rodd, 2018). It is even argued that listeners and readers rarely notice the ambiguities that 
pervade our everyday language (Altmann, 1998). 

While it is usually easy for humans to identify the intended meaning of words with multiple meanings, it is still 
challenging for NLP and IR systems to determine the correct sense of such lexemes. When a word has different 
senses, it is difficult for the machine to determine the intended sense in a sentence (Saqib, Ahmad, Syed, Naeem, 
& Alotaibi, 2019; Trivedi, Sharma, & Deulkar, 2014). The word depression in a query, for instance, is 
challenging for IR systems. It is difficult for IR systems to assign its meaning to illness, weather, or economics. 
Thus, it is the task of WSD techniques to remove ambiguities and determine the correct sense of these words, 
and automatically assign the correct sense to a word with multiple meanings in a particular context (Dixit, Dutta, 
& Singh, 2015). The success of a given IR system depends on its ability to disambiguate, determine the correct 
sense, and finally retrieve only relevant documents in response to the user query.  

Despite the development of different WSD techniques, evaluations of such techniques suggest that these have 
inherent limitations; therefore, lexical ambiguity remains the most serious problem for NLP and IR systems in 
Arabic. This is attributed mainly to linguistic peculiarities which are not usually considered in standard IR 
systems which are largely based on European languages. However, Arabic is a Semitic language, very different 
from European languages in terms of phonetics, morphology, syntax and semantics (Altaher, 2017; Khan & 
Alshara, 2019; Shaalan, Siddiqui, Alkhatib, & Abdel-Monem, 2018). Hence the challenge faced by researchers 
and developers of NLP applications for Arabic text and speech (Farghaly & Shaalan, 2009). It follows that IR 
systems should be adapted to take into consideration the unique linguistic features of Arabic.  

In light of this argument, this study is undertaken in order to better understand the reasons for lexical ambiguity 
in the IR applications of Arabic; based on this understanding, reliable and practical solutions to the problem can 
then be developed. The remainder of this article is organized as follows. Section 2 surveys the main linguistic 
and WSD approaches for addressing the problem of lexical ambiguity in IR. Section 3 describes the methods and 
procedures of the study. The results of the study are reported in Section 4. Section 5 concludes this paper. 

2. Literature Review  
The literature suggests that the issue of lexical ambiguity has been extensively discussed in different linguistic 
disciplines including semantics, psycholinguistics, and discourse studies. Various semantic theories, including 
cognitive semantics, have been generated in order to explain the nature of lexical ambiguity and to capture as 
many generalizations as possible about the ambiguous and contextually-dependent nature of word meaning 
(Chierchia & McConnell-Ginet, 1993; Deane, 1988; Löbner, 2002; Lyons, 1975; Stallard, 1987; Tuggy, 1993). 
Issues of ambiguity, vagueness, polysemy, and homonymy have been the focus of lexical ambiguity studies. 
There is general consensus that lexical ambiguity comes from the meaning of the words, not the structure. The 
multiple senses of a word thus lead to more than one interpretation. Different reasons have been suggested. 
These include shifts in application, specialization in a social milieu, figurative language, homonyms 
reinterpreted, and foreign influence (Leech, 1981; Lyons, 1995). Semantic studies thus have been concerned with 
proposing approaches that help to determine the correct sense in ambiguous sentences. Semantic 
relatedness/interconnections, cognitive topology and lexical networks remain among the most popular semantic 
approaches to lexical ambiguity (Brugman & Lakoff, 1988). 

In psycholinguistics, studies have generally focused on the mental lexicon, brain activity and responses to lexical 
ambiguity, and perception strategies governing the interaction between linguistic structures and performance 
(Durkin & Manning, 1989). Traditionally, the psycholinguistic approaches to lexical ambiguity were based one 
way or another on Chomsky’s concept of linguistic competence. Studies in this tradition were concerned with the 
human ability to detect and resolve ambiguity and what an individual must know in order to comprehend and 
speak his language (Shultz & Pilon, 1973). In this regard, different experiments were carried out to investigate 
the universality of the problem. In other words, researchers sought to answer the question of whether the issue of 
lexical ambiguity should be considered analogous (Kess & Hoppe, 1978). This was aligned with Chomsky’s 
concept of Universal Grammar. Under this traditional approach, lexical ambiguity was usually seen as a 



ijel.ccsenet.org International Journal of English Linguistics Vol. 10, No. 3; 2020 

221 

disadvantage as it could result in confusion and misunderstanding. Studies in this tradition stressed that linguistic 
ambiguity is problematic because of its negative impact on precise language processing (Kess & Hoppe, 1981). 
Recent studies in psycholinguistics, however, argue that ambiguity is no longer a problem—it is something that 
can be taken advantage of, because easy [words] can be repeatedly used albeit in different contexts (Finn, 2012). 

Interestingly, in both semantics and psycholinguistics, discourse-based approaches have been used in the 
investigation of lexical ambiguity. In semantics, discourse is suggested as a mechanism for the resolution of 
lexical ambiguity. The focus is no longer on semantic relatedness. Likewise, the integration of discourse was 
tested and proved effective in helping individuals with aphasia and brain damage to resolve lexical ambiguity 
(Mason & Just, 2007; Tompkins, Baumgaertner, Lehman, & Fassbinder, 2000). 

With the development of computational theory and NLP studies, the issue of lexical ambiguity has once again 
been the focus of many researchers. Different techniques have been developed in recent years to address the 
problem of lexical ambiguity and improve the performance of IR systems. Work on lexical ambiguity has 
traditionally focused on developing WSD techniques. The assumption has been that there is a close relationship 
between WSD and the IR. Therefore, correct disambiguation of words can lead to improvements in the 
effectiveness of retrieval systems (Sanderson, 1994; Zhong & Ng, 2012). Determining the correct sense or 
meaning of a given word increases the potential of IR systems to suggest relevant documents for a given user 
query. 

According to the literature, there are three main WSD approaches: dictionary-based, ontology-based, and 
knowledge-based. The dictionary-based approach is usually considered to be the traditional WSD method and it 
is based on the development of corpus-based studies that use electronic corpora to resolve ambiguity issues. In 
this approach, a word’s meanings are compared to those of the surrounding text where all the senses of a word 
that need to be disambiguated are retrieved from the dictionary (Agirre & Edmonds, 2007; Chen, 2000; Pal & 
Saha, 2015; Zhekova, 2014). One of the earlier attempts to implement this approach was Lesk’s (1986) use of 
Oxford’s Advanced Learner’s Dictionary of Current English to resolve the issue of word senses (Indurkhya & 
Damerau, 2010). Similarly, Guthrie et al. used the Longman Dictionary of Contemporary English in 1991 to 
remove ambiguities and identify the correct sense of polysemous entries through the use of subject codes (Pal & 
Saha, 2015). The underlying principle in this approach is that there is a set of complete entries for each 
polysemous expression, from which anomalous alternatives are subsequently eliminated and only relevant senses 
are retained. Despite the continued research on dictionary-based approaches and techniques, lexical ambiguity 
remains pervasive so that many doubts have been raised about the reliability of these methods (Agirre & 
Edmonds, 2007). One major problem with this approach is that it is based on what can be described as ‘static 
knowledge’ as it makes no use of any specific knowledge manipulation mechanisms apart from the simple ability 
to match valences of structurally-related words (Boguraev & Pustejovsky, 1990). 

With knowledge-based techniques, the main assumption is that disambiguation systems need sources of 
knowledge to determine the proper meaning of a lexeme that has multiple senses (Otegi, Arregi, Ansa, & Agirre, 
2015; Sheng, Fan, Thomas, & Ng, 2001). Hence, these approaches are similar to dictionary-based ones in that 
both rely on sources of knowledge for disambiguation purposes. However, dictionary-based techniques are 
limited to the use of dictionaries, whereas knowledge-based techniques exploit different sources such as 
specialized corpora, WordNet and semantic systems. It is through these sources of knowledge that WSD systems 
are able to disambiguate words by means of defining their contexts. In other words, corpora, WordNet, and other 
sources of knowledge are used as the contexts for disambiguating lexemes with multiple senses. One major 
problem with knowledge-based approaches, however, is that they are based only on words to disambiguate target 
words. Devendra and Salakhutdinov (Chaplot & Salakhutdinov, 2018) explain that the sense of a word depends 
on not just the words in the context but also on their senses. Since the senses of the words in the context are also 
unknown, they need to be optimized jointly. 

In order to overcome the limitations of both dictionary-based and knowledge-based approaches, ontology-based 
techniques have been developed. Ontologies are the most widely-used techniques in IR systems. In the 
ontology-based approach, words with multiple senses are disambiguated through the design of ontology of 
semantic concepts. The function of this ontology is to enable IR systems to resolve lexical ambiguity problems 
by drawing inferences from the concept network of the ontology (Hadzic, Chang, & Wongthongtham, 2009; 
Ławrynowicz, 2017; Mena & Illarramendi, 2001). The underlying principle of ontology-based techniques has 
been that searches in IT should be based on meaning and inference rather than on literal strings. IR systems and 
search engines should be equipped with mechanisms enabling them to understand the relationship between 
search items and concepts. However, in spite of their advantages in terms of enriching semantic inference and 
expressiveness, making inferences and understanding relationships between search items, deep levels of 
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The investigation led to the conclusion that lexical ambiguity is the main reason that irrelevant items were 
selected in response to the selected queries. Overall, lexical ambiguity can be grouped under three main 
categories: the unique morphological and orthographic system, the diglossia feature, and the multiple colloquial 
dialects. These represent real challenges for IR systems and have negative impacts on their performance as 
explained below.  

Results indicate that thousands of irrelevant documents were generated due to the unique morphological features 
which are not taken into account by the search engines. The Arabic language has a unique morphological system 
which can lead to an incorrect meaning being assigned to a particular word. This can be explained as follows. In 
order to determine the sense or meaning of a word, the three-letter root must be identified, followed by the 
identification of the syntactic context (Akesson, 2010; Ryding, 2005; Soudi, van den Bosch, & Neumann, 2007). 
However, in some cases, its meaning can still be ambiguous, and will need to be disambiguated (Glanville, 2018; 
Habash, 2010; Ryding, 2014). That is, it is sometimes difficult to relate the meaning of a given word to its 
three-letter root. The word مسكين (poor) as in  من ولد مسكين يا له (What a poor guy), for instance, has no connection 
to the three-letter form سكن (literally translated as being constant or inhabited). This is partly due to the inevitable 
evolution of Arabic, just as in any other language. Hence, very often it is difficult for those IR systems based on 
Arabic dictionaries and glossaries to determine the sense or meaning of a given word. Additionally, Arabic is a 
synthetic language that is based on the case system. This case system is not usually used by Arabic people in 
spite of its importance in determining the correct meaning or sense of the word as shown in Table 2. 

 

Table 2. An illustration of the case system in Arabic  

Arabic form Part of speech English translation 
 Noun Necklace عِقْد
  Noun Decade عِقْد
  Noun Contract عَقْد
  Verb Held عَقدََ 
  Verb Complicated عَقَّدَ 
 Noun Knots عُقدَ

 

Generally, Internet users are not familiar with the use of cases in their search. Furthermore, the vast majority of 
Arabic texts are not written using the case system. This poses real challenges for search engines and IR systems 
that are attempting to retrieve only relevant documents or items in response to users’ queries in Arabic.  

Another reason for the lexical ambiguity in Arabic is the feature of diglossia, of which there are two types. These 
are Modern Standard Arabic (MSA) which is considered the H (High) variety and Colloquial Arabic which are 
classified as the L (Low) variety. In the Arab countries, MSA is the official language and the formal language of 
education in schools. It is also used in the Press and TV news bulletins. Educated Arab speakers are usually able 
to produce and understand MSA, while uneducated people usually have difficulties in producing and even 
understanding this variety of Arabic (Albirini, 2016; Ferguson, 1996; Owens, 2013). There are great similarities 
between MSA and Classical Arabic (the language of the Quran and classical literature) especially in terms of 
morphology, grammar and structure. However, although MSA follows the basic syntax and morphology of 
Classical Arabic, the vocabulary is widely different (Ibrahim, 2009; Simpson, 2019). Colloquial Arabic, in turn, 
refers to the regional vernacular dialects. It is the language used in everyday speech (AlSuwaiyan, 2018). It is an 
umbrella term that covers various Arabic dialects including Egyptian Colloquial Arabic, Lebanese Colloquial 
Arabic, and Moroccan Colloquial Arabic. The morphological, lexical, and grammatical features of CA are very 
different from those of MSA (Bassiouney, 2009). Many words in MSA are used differently in CA, making it 
difficult for IR systems and search engines to determine the correct sense. It was also observed that the 
significant changes in the vernacular dialects of CA represent a real challenge to the performance of IR systems. 
Although these vernacular dialects of Arabic were not written and for centuries had been used only for oral 
communication, they are now widely used in writing, especially with the development of communication 
technologies, the proliferation of social media platforms, and the increasing interaction between people 
(Bassiouney, 2009; Harrat, Meftouh, & Smaili, 2019; Khedher et al., 2015). 

The results of this study align with those reported in the literature in that the reasons for lexical ambiguity are not 
the same for all natural languages. This suggests that the linguistic peculiarities of a particular language should 
be considered by IR engineers if they are to provide workable and reliable solutions for the problem of lexical 
ambiguity (Dini L. & V., 1999; Kraaij, 2004; Mustafa & Suleman, 2015). Furthermore, all variations of Arabic 
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must be taken into account during the development of IR systems. The colloquial Arabic dialects have long been 
ignored in NLP and IR applications, with the current search engines still catering mostly to MSA (Azmi & 
Aljafari, 2015; Obeid, Salameh, Bouamor, & Habash, 2019). IR systems are generally trained to deal with 
Standard Arabic which is in many ways different from the Arabic colloquial dialects. Thus, it is imperative that 
IR systems and search engines integrate these colloquial dialects to address the day-to-day needs of users all over 
the world. CA is the primary language of communication and younger generations are more adept at 
communicating in CA (Azmi & Aljafari, 2015; Bassiouney, 2009). 

For better disambiguation and IR system performance in terms of Arabic, this study proposes that clustering 
models based on supervised machine learning theory should be trained to address the morphological diversity of 
the Arabic language and its unique orthographic system. Search engines should also be adapted to the geographic 
location of the users in order to address the issue of Arabic vernacular dialects. They should also be trained to 
automatically identify the various dialects, which will lead to the improvement in the IR performance as it 
reduces the possibility of having words with multiple meanings (Obeid et al., 2019; Sadat, Kazemi, & Farzindar, 
2014). 

5. Conclusion  
In this article, we explored the reasons for lexical ambiguity in Arabic IR systems in order as a first step to 
proposing reliable and workable WSD solutions. It was revealed that linguistic peculiarities have important 
implications for IR engineering and performance. In Arabic, these have an impact on the reliability of IR systems 
and search engines. There are serious limitations of the selected search engines in considering the linguistic 
peculiarities of Arabic which constitute the main reasons for linguistic ambiguity in Arabic IR. These can be 
mainly attributed to the unique morphological system of Arabic, its diglossia, and the numerous colloquial 
dialects. WSD techniques need to consider these linguistic peculiarities for a better IR system performance. This 
paper was limited to considering the use of only the Arabic alphabet by search engines. Future work can focus on 
lexical ambiguity in the emerging Arabic chat Alphabets usually referred to as Franco-Arabic or Arabizi. 
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