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Abstract 

End-user feedback has an essential role in the requirement’s identification, prioritization, and management of the 

software evolution process. Several approaches are proposed for utilizing user-pushed feedback collected from 

social media, forums, and review systems. The collected feedback via the online channels contains a variety of 

information. Thus, the researchers proposed analytical approaches to classify feedback according to the data it 

holds. Still, recent results indicate that no single classifier works best for all feedback types and information 

sources. Also, online feedback does not have a direct mapping to the requirements, and it does not contain user 

context data. This causes wasting in developers’ effort in understanding and analyzing feedback. On the other 

hand, online feedback cannot be used to explore user satisfaction and acceptance of the implemented and 

planned requirements. Likewise, the developer cannot collect feedback from a specific segment of the users. To 

overcome the deficiency of online feedback, this paper proposes a novel approach that utilizes pulling feedback 

from users while using the software. The proposed approach consists of a model and process for structuring 

feedback requests, linking feedback to the requirements, embedding feedback with the user context information, 

specifying the target audience for the feedback request, analyzing collected feedback depending on predefined 

interpretation rules, which provide insights that support developers in release planning. The feedback request 

model and process are implemented by a tool called FeatureEcho which was evaluated in a software company by 

conducting a case study for upgrading a governmental internet portal. The results indicate that FeatureEcho is a 

valuable step towards increasing the understanding of the end-users needs which supports the decision-making 

procedure of software evolution. 

Keywords: software evolution, end-user feedback, release planning 

1. Introduction 

The developers must upgrade the software to maintain their user satisfaction and keep the software alive. 

End-users must be involved in software evolution by taking in their feedback. If the software is not upgraded 

based on the feedback, the end-user satisfaction of the software will be minimized because their opinion does not 

influence the software (Maalej, Walid, 2011). In the long run, developers miss a valuable opportunity to validate 

their software frequently and to discover new requirements (Leite, Software, 1991). The feedback collected from 

the user increases the understanding of the user’s needs (Sauvola, Lwakatare, 2015)(Carreño et al., 2013). The 

developers use the feedback to improve further releases of the product either by developing new features or 

fixing existing errors. There are two primary types of end-user feedback (Stade, Fotrousi 2017): 1) User-pushed 

feedback through social media, online forums, and review systems. 2) Developer-pulled feedback through 

crowdsourcing platforms, or in-situ from the software in use.  

Analyzing feedback collected by the user-push model is slow and complex (Sauvola et al., 2015). This feedback 

contains a mixture of data. It might contain bugs, feature requests, or suggestions. Consequently, researchers 

have studied how to use text classification and natural-language processing to categorize feedback (Maalej, 

Walid, 2015)(Iacob et al., 2013). Investigating analysis results show that no single classifier works best for all 

feedback types and feedback channels (Maalej, Walid, 2015).  
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Despite the classification problem, the user-push feedback must be analyzed to relate them to the functional and 

non-functional requirements (Groen, Eduard C., 2017) (Pagano, Dennis, 2013). Likewise, user-pushed feedback 

is missing user context information which can carry valuable information that can help make the feedback from 

the developers (Johanssen, Jan Ole, 2019). There are four main categories of user context information: Task, 

Spatio-Temporal, Run-time environment, and user information (Dzvonyar, Dora, 2016). 

Additionally; there is a significant difference in software usage behavior among users (Lim, Soo Ling, 

2014)(Dzvonyar, Dora, 2016)(Maalej W, Happel HJ, 2009). Thus, the developers should start communication 

with the user or a specific segment of users (Snijders, Remco, 2015) to measure their satisfaction with the 

implemented requirements. The developers need to assess how many users will benefit from adding or 

improving a specific requirement (Pagano, Dennis, 2013). Also, the developers want to provide a solution, or 

clarification of the feedback provided by the user, which is called the feedback loop (Bailey, Kendall, Meiyappan 

Nagappan, 2019).  

To support online feedback processing and overcome their shortness, this paper proposes the utilizing of 

developer-pulled feedback from the software in use, to merge feedback with the user context information and 

link them to the functional and non-functional requirements. This paper provides 1) a feedback request model for 

the feedback enriched with the user context information and linked to the requirements. 2) a process for 

preparing feedback requests, specifying target audiences for the feedback, analyzing pulled feedback based on 

predefined rules which support release planning. The main idea is enabling the developers to have direct 

communication with the users to get their opinion regarding the evolution tasks; that will increase user 

satisfaction and turn into proactive software evolution.  

To evaluate the suggested model, FeatureEcho tool has been developed and used by a development team to 

upgrade an internet web portal. FeatureEcho provides developers with indicators that help them make the right 

decisions during the release plan.   

This paper is structured as follows: Section 2 investigates related work on consuming user feedback in software 

evolution. Section 3 provides an overview of the feedback request model and process. Section 4 reports 

FeatureEcho tool and the conducted case study for preliminary evaluation, and Section 5 concludes with a future 

direction. 

2. Related Work 

In conducting this paper, we investigated the research related to utilizing feedback in software evolution, which 

supports developers in the release plan. The most related papers are classified into four categories. First, the 

proposed feedback models for structuring feedback. Second, the proposed processes for integrating feedback into 

software development activities. Third, the method of directing feedback to a specific segment of end-users. 

Fourth, the feedback analysis techniques. 

2.1 Feedback Models 

According to the feedback ontology (Morales-Ramirez et al., 2015a), structured feedback is a type of feedback 

provided in a form that makes it easier to aggregate, process, analyze, and evaluate. This paper advocates that 

structured feedback in the form of a short questionnaire (Kim, Jun H., 2008) can support requirements 

engineering during software evolution. 

(Sherief, Nada, 2015) proposes a classification of the user-pushed feedback types. This paper proposes the 

adoption of these types to be utilized in developer-user pull feedback.  

Several researchers (Stade, Melanie, 2017) (Sherief, Nada, 2015) (Maalej, Walid, 2015) found that it is better if 

the feedback has a direct link with the requirement. This paper proposes an extension of the requirements goal 

model (Yu, 2009) for linking functional and non-functional requirements with the feedback.  

Regarding non-functional requirements, this paper considers reliability, usability, portability, and performance 

suggested by (Lu & Liang, 2017). 

2.2 Integrating Feedback into the Software Development Process 

The developers are needed to integrate feedback with their work to benefit from them in the software evolution. 

(Dzvonyar, Dora, 2016) proposes CAFÉ, which provides an approach for collecting feedback from the software 

in use and saves them in the issue tracking system. CAFÉ provides a good solution for collecting user context 

information by depending on software Add-in. However, the feedback does not have a direct link to the 

requirements automatically. Also, CAFÉ utilizes the push model of feedback. So, the developers can’t ask users 

questions related to their satisfaction with the implemented or planned features. This paper adopts and extends 
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CAFÉ for pulling feedback and linking them to the requirements. That will enhance the traceability of the 

feedback, save developers time and effort, and support them in software evolution 

There are other approaches like OpenProposal (Rashid, Asarnusch, 2009), iRequire (Norbert et al. Seyff, 2010), 

ConTexter (Gärtner, Stefan, 2012) and AppEcho (N Seyff, Ollmann 2014) which provide a mechanism for the 

user to push their feedback. Also, several platforms proposed like iThink (Fernandesa, Joao, 2012), GREM 

(Lombriser, Philipp, 2016)  and Refine (Snijders, Remco, 2015)  conduct requirement elicitation from the crowd 

through online games, where crowd members participate, collaborate and discuss the requirements using an 

interactive system that contain all game elements (e.g., Avatars, points, and badges). Requirements 

engineering by these approaches depends on the linguistic processing of the feedback (och Dag, J. Natt, 

2005). The elicited feedback is not linked to the software implemented or planned requirements. 

2.3 Targeting a Specific Segment of the Users 

In some cases, the developers are needed to direct feedback questions for a specific segment of the user, who 

have some specifications related to the user context information. The feedback question may also be triggered 

regularly (Froehlich, Jon, 2007) or at a particular moment when users do a specific task during the interaction 

with the system (e.g., opening the latest news in an internal portal). MyExperience (Froehlich, Jon, 2007) is a 

system that enables a semi-automated elicitation of user context information on mobile devices. And it provides 

a mechanism to pull user feedback by triggering a questionnaire when the user does a specific action while using 

the mobile phone. MyExperince proposes an XML interface for defining questionnaire triggering rules. 

MyExperience only comprising certain events of the smartphone, not events of the software under evolution. 

This paper proposes the adoption of MyExperince method to be appropriate for software evolution. 

2.4 Feedback Analysis 

The feedback is analyzed by a quantitative or a qualitative measure (Olsson & Bosch, 2015)(Morales-Ramirez, 

Perini, & Ceccato, 2015b)(Fiedler, Markus, Sebastian Möller, 2012). The following are the utilized measures: 

Mean Opinion Score (MOS), Likert scale, Semantic Differential Scale, GAP Analysis, Net Promoter Score, and 

sentiment analysis. 

2.5 Summarization of the Related Works 

The previous researches do not provide practice on how to turn into proactive software, the developers do not 

have an efficient approach to pull the feedback related to the software evolution activities. The main problems 

are 1) the collected feedback is not linked to the requirements, 2) the developers are not able to collect feedback 

from a specific segment of the user or have a feedback loop with them, 3) the collected feedback does not 

contain the user contextual information, 4) there is a need for an approach to analyzing feedback after linking 

them to the requirements to prioritize tasks in the software evolution road map, and 4) the proposed approaches 

for collecting pushed feedback assume that the users have the motivation to provide feedback. 

This paper proposes the use of developer-pulled feedback from the software in use to collect feedback enriched 

with the user context information. The feedback structure of (Sherief, Nada, 2015), and the targeting method of 

MyExperience (Froehlich, Jon, 2007) are adopted to provide a structure of the feedback request. The feedback 

request allows developers to elicit requirement-based feedback from the end-users or a specific segment of the 

users. The process of (Sherief, Nada, 2015) (Dzvonyar, Dora, 2016) has been modified to be appropriate for 

preparing feedback elicited by the developers, collecting feedback from the users, and analyzing collected 

feedback. 

3. Proposed Feedback Model 

This paper proposes an approach that aims to increase the utilization of user feedback by linking them to the 

requirements. That will enhance requirements engineering during software evolution. The approach achieves the 

following criteria: 

Criteria 1. Involving users to specify their satisfaction with the implemented requirements.  

Criteria 2. Involving users to specify their acceptance of a feature evolution. 

Criteria 3. Involving users by asking them about their problems and suggestions regarding the planned and 

implemented requirements. 

Criteria 4. Allowing developers to involve a specific segment of users in software evolution. 

Criteria 5. Enriching feedback with user context data, to provide a better understanding of the user needs. 

Criteria 6. Providing a method for analyzing feedback with links to the requirements. 



http://cis.ccsenet.org Computer and Information Science Vol. 13, No. 3; 2020 

19 

 

The pull model is considered for achieving the criteria 1,2,3. The feedback channel will be a software add-in, 

which achieves the criteria 4. The user contextual information is used as targeting rules to specify the user 

segment that will be involved in the feedback. This achieves criteria 5. The elicited feedback has a direct link to 

the requirements. After pulling feedback, an analysis will be processed based on predefined analysis rules. This 

achieves criteria 6. Figure 1 shows the proposed feedback approach. 

 

Feedback

Developer- Pull Approach

Utilize

Run-time specification 
usage data

Enriched with

Functional &non-
functional Requirements

Linked To

Software in user

Channel

Whole users / specific 
segment 

Targeting

Feedback Request
Questioner 

Method

Qualitative techniques  

Analyzed

 

Figure 1. Feedback proposed approach 

 

This paper proposes a structure of the feedback request that allows developers to pull requirements-based 

feedback. 

3.1 Feedback Model Overview 

This paper proposes a model for the feedback request derived from a combination of the goal requirement model, 

findings of (Sherief, Nada, 2015), and the targeting method of MyExperience (Froehlich, Jon, 2007). The model 

comprises three main components: feedback request, feedback response, and feedback analysis. The feedback 

request component is a questionnaire prepared by the developers and is directed to users to elicit their feedback. 

The feedback response is the collected feedback enriched with user context information. The analysis feedback 

component specifies the interpretation rules of the elicited feedback. The following sections describe the method 

of linking requirements to the feedback request and the specification of model components.  

3.2 Linking Feedback to the Requirements  

The feature is defined as a “triplet: F = (R, W, S), where R represents the requirements the feature satisfies, W 

the assumptions the feature takes about its environment and S its specification” (Classen, Heymans, & 

Schobbens, 2008). To link requirements to the feedback, the requirement goal model has been adopted by adding 

the task to the default model. Each requirement contains tasks. The task is user-system interaction to do a 

specific activity. The feedback request will be linked to the task. Figure 3 shows the software backlog structure 

after adopting the goal model. For example; For e-shop web applications. There are features like a shopping cart, 

product catalog. The product catalog feature requires sorting products. The sorting requirement has tasks like 

sorting ascending or sorting descending.  
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Figure 2. Feedback Model 

 

Figure 3 shows the adopted goal model. It links the feedback request to the task to specify when and where to 

trigger the feedback request during the user-system interaction. Also, this structure is appropriate for asking 

questions about the non-functional features after the user interacts with a specific feature. For example; for an 

e-shop web application. Ask users about their satisfaction with the application usability when opening the home 

page several times. This paper considers the following non-functional requirements: reliability, usability, 

portability, and performance. 

Feature

Requirement

Task

Feedback Request

 

Figure 3. Adopted goal model 

 

3.3 Feedback Request Component 

Feedback request refers to the feedback questionnaire which has a link to a specific task. The feedback request 

comprises the following sub-components: Specificity, Questionnaire, Feedback Type, and Triggering rules.  

3.3.1 Specificity 

Specificity refers to the functional or non-functional requirement that the feedback request is linked to. The 

feedback request is related to the requirement via Task. Thus, the task specifies when to trigger the feedback 



http://cis.ccsenet.org Computer and Information Science Vol. 13, No. 3; 2020 

21 

 

request. The developer will make a remote call for the feedback request in the task code. For instance; the 

feedback request will be called when the user clicks along the sort ascending button. 

3.3.2 Feedback Type  

The feedback types are assumed to be appropriate for pulling feedback. There are two parties: developers who 

ask questions, and users who provide feedback. The feedback types are divided into two categories: 1) Normal 

Feedback: when developers want to ask a normal question related to specific requirements to users, and 2) 

Feedback to feedback (loop): when developers want to get in contact with users based on their posted feedback 

to have more clarification or provide a solution to a problem. These two types of feedback allow developers to 

start communication with the users to ask them about the feedback or to provide clarification, solutions, or 

information about the new features. The user will be notified to ensure that their feedback affects the software. 

Table 1 shows the description of feedback types.   

Table 1. Feedback Types 

Type Category Description 

Justification Normal Developers ask users about their opinion about an evolution task related to 

a specific requirement 

Problems Investigation Normal Developers are asking about problems facing users when interacting with 

a specific requirement. 

Confirmation Normal Developers ask users to specify their satisfaction with the implemented 

requirements or their acceptance of adding new requirements. 

Suggestion Normal Developers are asking users for their improvement suggestion of a 

specific requirement 

Elaboration Feedback Loop Developers ask a user to explain the posted feedback. 

Solution Feedback Loop Developers provide a solution for a posted problem 

Verification Feedback Loop Developers confirm that the problem sent by the user is solved. 

 

3.3.3 Questionnaire 

The feedback request is a question directed to users to pull their feedback; this question will be prepared by the 

developer as a questionnaire. This paper concerns the short questionnaire. An instance of the question can be 

“Can you scale your satisfaction of sorting function?” 

The response to the question will be in one of the following styles: Text, Rating, Yes/No, Scaling or Choice 

3.3.4 Triggering Rules 

There are significant differences in software using behaviors across users. So, there is a need for the developers 

to pull feedback from a specific segment of the users. In some cases, developers want to pull feedback from the 

users who use specific features many times, because they know their problems and have a clear vision about how 

to upgrade.    

This paper proposes the user segmentation based on the user context information. There are three related items to 

define triggering rules: 

 Task: the system-user interaction with a requirement. Specifies when to trigger the questionnaire. 

 Rules: a set of conditions related to the user context information. Specify for Whom to trigger the 

questionnaire. 

This paper proposes an interface for defining triggering rules extended from MyExperience (Froehlich, Jon, 

2007). Figure 4 shows an example of the triggering rule. First, the questionnaire and the related task are specified, 

then the triggering rules are defined and the relation between them is specified to be “And”, “Or”. 
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Figure 4. Triggering Rule Example 

 

The user contextual information is Country, OS, Browser, Language, and Task. The feedback request is prepared 

by the developers and contains the pulling request question, triggering rules, and the request is linked to a 

specific task. 

3.4 Feedback Response Component 

The feedback is collected from the software in use through an add-in. The add-in calls the questionnaire and 

posts the feedback. When a user interacts with the software and does one of the predefined tasks which are 

associated with a questionnaire, the triggering rules of the questionnaire are checked, and the questionnaire is 

triggered to the user. The feedback response component refers to the user feedback on the triggered questionnaire. 

The response holds the user’s contextual information and the feedback of the user.  

3.5 Feedback Analysis Component 

Developers are specifying the analysis technique of elicited feedback. This paper considers the following 

quantitative analysis techniques: Mean Opinion Score (MOS), Likert Scale, Semantic Differential Scale, GAP 

Analysis, and Net Promoter Score. Also, this paper considers sentiment analysis as a qualitative analysis 

technique. 

The Feedback request model uses these techniques in the form of interpretation rules that can be defined by the 

development team when preparing a feedback request to facilitate decision making (e.g., a development team 

can use GAP analysis technique to measure the gap between the expected and real satisfaction of a specific 

requirement). The analysis of the feedback will help developers in taking the right decisions related to software 

evolution activities. The analysis results may cancel a planned evolution or may change or confirm them. 

4. Proposed Feedback Process   

A process for collecting and analyzing feedback is proposed by adopting the process of (Dzvonyar, Dora, 2016) 

to be appropriate for pulling feedback. Figure 5 shows the process which consists of three phases. The proposed 

process allows developers to collect two types of data: 1) contextual information only: when developers want to 

collect user contextual information about the user without triggering feedback requests. 2) User feedback 

embedded with the context information: when developers want to collect user context information and trigger a 

feedback request to the user.  The following sections describe the process tasks. 

4.1 Preparation Phase 

In this phase, the developers are preparing for the feedback, they start by deciding what data they want to collect 

for every software requirement, user context information only, or user contextual information and user feedback. 

The following are the steps of the feedback preparation by the developers: 

A. Defining software requirements: As a result, the software backlog is defined 

B. Specify the requirement that the developers want to collect their user contextual information or 

feedback and define tasks for.  

C. Change the code of the software under development to make remote calls for the tasks, in the places 

where the developers want to trigger the feedback request 

D. If developers want to collect feedback, they will define the feedback request and associate them to the 

defined task by  

a. Specifying the feedback type  

b. Specifying feedback question and style  

c. Specifying feedback triggering rules  
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d. Specifying the interpretation rules  

E. Publishing a new release of the software  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Feedback Preparation, Elicitation and Analysis Process 

 

To save developers time a feedback request templates are defined which cover the most common questions the 

developers want to ask during evolution tasks. Figure 6 shows a sample of the pre-defined templates. 

Figure 6. Feedback Request Template Example 

 

 

 

Requirement Evaluation 
Template 

Type: Verification 

Description: Let your crowds widely evaluate their experience with your software functional and non-functional requirements.  

Hints: Appropriate for new added requirement 

Question: Overall, how satisfied are you with the “Software Requirement”? 

Analysis: MOS 

Targeting Rules: Ask long time software users 
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4.2 Feedback Elicitation Phase 

A new version of the software is released for the users. The following are the steps of user interaction with the 

software and how to collect the feedback: 

F. The user interacts with the software. 

G. If the user interacts with a pre-defined task, a remote call for the task is invoked 

H. A Task hit is registered. The task hit contains the following data: 

a. Software requirement 

b. User context information 

I. If the task is associated with a feedback request, the triggering rules of the request are checked. If the 

rules are achieved, the feedback request will be sent to the user. 

J. The user responds to the feedback request and the response will be registered with links to the task and 

the software requirement.   

4.3 Feedback Analysis Phase 

When passing the duration of feedback collection, the analysis of the feedback starts as: 

K. An off-line analysis is performed for the user contextual information and the collected feedback which 

is linked to the software requirements. The analysis is run based on the pre-defined interpretation rules 

which were defined when defining the feedback request by the developers. The analysis provides a set 

of indicators (e.g., users are not satisfied with the specific feature) to support the developers in release 

planning.  

L. The developers will discuss the analysis result, then they make the required changes in the software 

backlog, they may remove some features, add some new ones, or plan to adopt another feature. 

5. FeatureEcho 

FeatureEcho tool was developed to evaluate the proposed Feedback request model and process. FeatureEcho 

provides a plugin to elicit feedback in-situ. Also, FeatureEcho provides developers with a back-end control panel 

to define the feedback request and preview analysis results. FeatureEcho needs a few modifications in the 

software under development code. FeatureEcho implements service-oriented architecture SOA; the back-end 

component and the feedback gathering plugin are communicating with each other through RESTful web service 

using JSON data format. Figure 7 shows FeatureEcho Architecture. 

 

 

Figure 7. FeatureEcho Architecture 

 

The feedback should be pulled from the user one time after achieving the triggering rules. So, an algorithm for 

user identification is implemented. The main idea is combining user context information with the user mac 

address, then hashing the result to provide the user with a unique identifier. Consequently, the feedback will be 

pulled once from them. 

5.1 Evaluation Case Study 

To investigate the applicability of the proposed model in practical circumstances, FeatureEcho was used in a 

software company to upgrade a governmental internet web portal. The portal was specially designed to bring 

information from different sources, restructuring them and presenting them uniformly. Besides enabling visitors 

from different domains (individuals, businesses, and government sectors) to browse the portal’s content, the 

portal provides features for many users. 
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The web portal comprises 30 features. The development team planned to implement the portal in three releases. 

Table 3 shows the initial release plan. After finishing release 1, the development team used FeatureEcho to pull 

end-user feedback regarding three implemented features and one planned feature. Also, they collected user 

context information of three features without pulling end-user feedback. After finishing feedback elicitation, the 

feedback was analyzed and the results provided the developers with potential information that led to changes in 

the release plan.  

 

Table 2. Portal Initial Release Plan 

Release Number of Features 

Release 1  17 

Release 2 7 

Release 3 6 

 

5.2 Case Study Preparation 

After finishing Release 1, the development team used FeatureEcho to prepare feedback requests for 3 

implemented features as described in Table 4. Also, they prepared a feedback request for a planned feature, as 

described in Table 5, to measure the user’s acceptance of implementing this feature. 

 

Table 3. Feedback Requests for the Implemented Requirements 

Feature Requirements Feedback 

1. News Center  Req1.1: Provide news in different types like 
national news, international, and legal news.  

 Req1.2: Provide end-user subscription for 
receiving the latest news. 

 Req1.3: Provide news printing and sharing on 
social media. 

 Req1.4: Provide a panel for viewing the hottest 
news. 

 Scope: Measuring end-users’ satisfaction 
with the implemented requirements 

 Targeting Rules: After visiting the news 
center, two times. 

 Analysis Approach: Mean Opinion Score 
(MOS) 

 

2. Media Center  Req2.1: Provide media library for different media 
types; photo, video, animation, and document. 

 Req2.2: End-user can rate media content. 
 Req2.3: End-user can download media to his 

device. 
 

 Scope: Measuring end-users’ satisfaction 
with the implemented requirements 

 Targeting Rules: After using the media 
player. 

 Analysis Approach: Mean Opinion Score 
(MOS) 

3. Portal Usability  Req3.1: Non-Functional Requirements  Scope: Investigate the gap between 
expected and real end-users’ satisfaction 
with portal usability  

 Targeting Rules: After visiting the portal 
three times, and browsing them on Mobile 

  Analysis Approach: GAP Analysis 

 

Table 4. Feedback Request for the planned requirement 

Feature Requirements Feedback 

4. Live Video 
Conference 

Req4.1: The government agency has over 15 
branches of customer service, they want to apply a 
feature on the portal for enabling live video 
conferences between the citizen and customer 
service representative 

Scope: Measuring end-users’ acceptance of 
implementing video conference feature.  
Targeting Rules: After visiting the portal four 
times. 
Analysis Approach: Likert scale 

 

Besides, developers wanted to collect user context information only for three features: 1) Frequently Asked 

Questions, 2) Content Search, and 3) Organization Events catalog.  

5.3 Case Study Result 

After one week of portal release, the user context information was collected for 743 times. Figure 8 illustrates 

the features usage frequency. The feedback requests triggered 157 times as shown in Figure 9.  
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The collected user context information on all requirements shows important information for the development 

team as stated in Table 6. They discovered that a large number of portal visitors are using mobile. 

 

Table 5. Information Extracted from implicit feedback data 

Implicit Feedback Data Insights 

Browsers Mobile: 40%, Chrome: 28%, Firefox: 18%, IE: 11%, Other: 3%   

Language Arabic: 65%, English: 28%, Other: 7% 

 

FeatureEcho provides several insights into the collected feedback. The team was expected that the GUI will be 

satisfied by the end-users, but the feedback request of feature#3 has shown that the end-users are not satisfied as 

illustrated in Figure 10. The feedback request of feature#4 results that the end-users are not interested in adding a 

live video conference feature in release 2 as shown in Figure 11.   

 

5.4 Case Study Discussion 

By discussing the insights provided by FeatureEcho, the development team modified the release plan. Depending 

on the questionnaire’s response, the GUI should be enhanced in Release 2, and the live video conference feature 

will be removed from the evolution road map. On the other side, and depending on the user contextual 

information, the user experience for the mobile and chrome browser should be considered, and the English 

content needs to be reviewed in Release 2. As a result, three tasks added to the release 2 and the video 

conference feature have been removed. 

 

 

 

Figure 8. Feature Usage Frequency Figure 9. Survey Response Frequency 

Figure 11. Adding video streaming feature Survey Result Figure 10. GUI Survey Expected Vs Reality 
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6. Discussion  

In this section, we discuss the implications of our suggested model, process, and tool as well as its current 

limitations. 

6.1 Implications 

The case study results confirm that the proposed model and process can support developers in software evolution 

and provide them with in-depth data for a better understanding of users’ needs. The suggested model and process 

allows developers to prepare feedback requests with links to the requirements. Consequently, the developers 

avoid wasting time and effort in mapping feedback responses to the requirements. That will increase the 

accuracy of the collected feedback and the feedback can be quantified, which allows for measuring user 

satisfaction and acceptance of the requirements. While the model proposed by (Sherief, Nada, 2015) is 

appropriate to extract the feedback from the natural text and link them to the feature. However, (Sherief, Nada, 

2015) approach provides more details, but it decreases the accuracy of the elicited feedback. Likewise, (Sherief, 

Nada, 2015) model is missing the user context information which helps in understanding software usage 

behavior. Also, the suggested model allows the targeting of a specific segment of users to collect their feedback.  

Several proposed tools use user feedback as the main source of software product evolution. Figure 12 illustrates 

a comparison between FeatureEcho and the other previous tools. By investigating comparison, FeatureEcho 

enhances the targeting technique provided by MyExperince to use the user context information as the 

segmentation attributes. Also, FeatureEcho enhances the Contexter technique to collect the context data by 

increasing the types of the collected data and embedding them in the user feedback. FeatureEcho provides a 

direct link between the feedback and the requirements, while Refine, GREM, and iThink are collecting feedback 

on the software level and need manual work to map the pushed feedback to the software features. Like AppEcho 

and OpenProposal the proposed tool FeatureEcho uses add-in to collect the feedback from the software in use. 

Besides, FeatureEcho provides predefined templates to facilitate feedback request preparation. Additionally, 

FeatureEcho provides a novel technique based on predefined interpretation rules to provide a primary analysis of 

the collected feedback, that helps developers in release planning. 

 

       Feature 

 

 

Tool 

Feedback 

Elicitation 

Feedback 

Template 

Software 

evolution 

Feedback 

Linked to 

Requirements 

Collecting 

Context 

information 

Feedback 

Loop 
Analysis 

Push Pull Yes No Yes No Yes No Yes No Yes No Manual Automated 

AppEcho X   X X   X  X  X X  

OpenProposal X   X X   X  X  X X  

Contexter X   X X   X X   X X  

MyExperince  X  X  X  X  X  X X  

iThink   X  X      X  X      X    X    X  

GREM   X  X      X  X      X    X    X  

Refine   X  X      X  X      X    X    X  

FeatureEcho  X X  X  X  X  X   X 

Figure 12. Comparison Matrix 

6.2 Limitations 

There are some limitations of the proposed model and process, the users are not able to submit the feedback at 

any time, they are restricted to respond to the feedback requests after doing a specific activity during using 

software, this will lead to a lack of a comprehensive view of users' opinions of the system. Likewise, asking for 

feedback during the use of software features may confuse users and affect user experience. 

On the other hand, the case study conducted to evaluate FeatureEcho is limited to a web portal and one release 

evolution. To get more accurate results, FeatureEcho has to be evaluated in a long-term setting, preferably by 

following the amount of feedback over several consecutive releases. Also, FeatureEcho should be evaluated with 

different types of software like mobile and desktop. 

7. Conclusion 

The process of software evolution can be improved by consuming end-user feedback. The proposed feedback 

request model and process help in capturing feedback, conducting feedback requests, and linking feedback to the 
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software requirements. A case study showed the potential of FeatureEcho in the support of software evolution.  

It is necessary to find a good trade-off between features corresponding to perceived user needs and new 

inventive ones that may provide a competitive advantage. Several factors interact with each other during the 

decision-making process of software evolution; some of these factors are related to marketing and competition, 

and other factors are related to the development cost. We tried to isolate the factor of user satisfaction by 

implementing features and acceptance for adding new requirements as an essential factor in the evolution, but 

that does not mean that other factors must be ignored. The proposed feedback request model can be developed to 

provide a mechanism for improving communication between marketers and developers to improve the quality of 

release planning, which increases the quality of the product. 

Today the end-users can use different channels to provide feedback like social media, forums, and store review, 

that will lead to a steady stream of feedback. The proposed feedback request model can be developed in the 

future to integrate these data with the pulled feedback to have a wide view of users’ needs and satisfaction on the 

software’s requirement level. 
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