
www.ccsenet.org/apr                     Applied Physics Research                 Vol. 2, No. 2; November 2010 

Published by Canadian Center of Science and Education 145

A Relativistic Model of Fluids Motion  

 

Jaak Heinloo 

Marine Systems Institute, Tallinn University of Technology 

Akadeemia tee 21, Tallinn 12618, Estonia 

Tel: 372-620-4317   E-mail: heinloo@phys.sea.ee 

 

Abstract 

The paper suggests a relativistic model of fluids motion combining the conventional formulation of the 
relativistic fluid mechanics with the “Maxwell’s formulation” of equations of the relativistic flow field, 
following from application of the 4D formalism in deducing Maxwell’s equations with the 4-potential replaced 
by the 4-momentum flux. The model is formulated to demonstrate a possibility of an alternative interpretation of 
viscosity effects in non-relativistic and relativistic situations. The model complements also the similarities in 
mathematical formulation of fluid mechanics and electrodynamics addressed in different contexts. 

Keywords: Relativistic fluid dynamics 
1. Introduction 

The present paper discusses a model of relativistic fluid combining the conventional formulation of the 
relativistic fluid mechanics (RFM) with the 4D formalism applied in derivation of Maxwell equations in 
electrodynamics (ED) where the 4-potential is replaced by the 4-momentum flux. The combined model allows 
for a diverging treatment of the viscosity effect in classical (non-relativistic) and relativistic situations – while in 
the non-relativistic case the motion energy is accompanied with the energy dissipation to heat then in the 
relativistic case the role of heat appears played by an oscillating process described in appropriate terms by 
equations expressed similar to Maxwell equations in ED. The discussed model complements as well the 
commented in different contexts (Heinloo, 2009a; Marmanis, 1998; Sedov, 1987) analogy between mathematical 
formulations of fluid mechanics and electrodynamics (ED). It shows that the usage of the relativistic fluid 
mechanics instead of the non-relativistic fluid mechanics enhance the similarities. 

2. The model components 

2.1 Conventional formulation of RFM 
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denote the fluid 4-velocity in this space-time. In Eq. (1) 221 cvdtd  , where vv  and dtdxv  , 

( 2cUU 
 ). Defining the energy-momentum tensor for the perfect fluids T  as   pgUUT  0 , in 

which p  is the pressure and 0  is the rest mass density specified as 200 / cp   where 0  is the 

constant rest mass density for 0p , the motion equation for a non-perfect relativistic fluid would be formulated 

as (Anile, 1989; Moller, 1972; Landau & Lifshitz, 1994) 
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In Eq. (2) ),( 4ff f  is the density of the 4-force acting on the medium due to the dissipative processes. The 

formulation of the relativistic FM in the form Eq. (2) requires the 4-force f  to be specified. 
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2.2 “Maxwell’s formulation” of the relativistic fluids flow field 

Consider tensor    
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where the first equation is the identity and the second equation defines the new quantity j  instead of  U0 . 

Defining the 3-vectors 
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Eqs. (3) rewrites as 
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where  321 ,, jjjj  and cjq /4 , coinciding in its written form with the Maxwell equations of ED (Anile, 

1989; Landau & Lifshitz, 1994) but differing from the latter by its physical sense. So, in our case E  and B  are 

the flow field characteristics specified as 
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We shall call Eqs. (4) the “Maxwell’s formulation” of the relativistic fluid flow field. Dissimilar to the 
conventional formulation of RFM, requiring specification of the 4-force acting on medium, the “Maxwell’s 
formulation” requires specification of ),(4 cqj j . 
3. The model – combined formulation of RFM 

Consider the situation with the fluid moving particles rest mass conserved. In this case it follows from the 

condition   0,
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 U  that 0, 
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On the other hand constituting, analogously to the electric current density in ED, that 

 vv  EBE ,cUFj  
 , 

with   having the sense similar to the electric conductivity, we shall have 

  jf 1 .                                       (5) 
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Eq. (5) combines the conventional formulation of RFM with the “Maxwell’s formulation” of relativistic fluids 
flow field given by Eqs. (4). In the combined description the “Maxwell’s formulation” is attributed a role 
analogous to the thermodynamics in the non-relativistic case with one substantial difference – while in the 
non-relativistic case the internal energy is understood as irregular motion (heat) coupling the motion description 
with thermodynamics, then in the relativistic case the medium internal energy is understood as an oscillating 
process covered by Eqs. (4). 

4. Discussion 

The discussed model solves the following tasks. First, it points to a possibility of an alternative interpretation of 
viscosity effects in non-relativistic and relativistic situations and, secondly, it shows that the commented in 
different contexts similarities between the mathematical formulation of fluid mechanics and electrodynamics 
(Heinloo, 2009a; Marmanis, 1998; Sedov, 1987) enhance if instead of the non-relativistic fluid mechanics the 
relativistic fluid mechanics is utilized. 

The solution of the first task removes the boundary condition problem to the equations of RFM accompanied 
with the formulation of the viscous term in these equations as a simple generalization of the viscous terms in the 
respective non-relativistic equations. The mentioned boundary condition problem explains why the applications 
of the RFM are restricted mostly to the perfect fluids, e.g. in the discussion of formation of shock waves in 
relativistic perfect fluid flows (Taub, 1978), where the problem of boundary conditions does not rise. We hope 
that the suggested model can be constructive for discussion, in particular, of cosmological problems e.g. related 
to the large-scale structure of the Universe as a stellar system, to the astrophysical plasma, etc. (Battaner, 1996) 
where the removal of the boundary condition problem may enhance the applicability of methods of relativistic 
fluid mechanics.  

The second task enhances the analogy between the mathematical formulations of ED and of the fluid mechanics 
to the relativistic case. The systemic description of fluid mechanics (Heinloo, 2009) explains the discussed kind 
of analogy by the similarities in the compared fields’ type, accompanied with their similar location in the 
conjoint systemic description. The discussed model insinuates that the similarities in mathematical formulations 
of the turbulence problem and of the description of fields of strong interaction (Heinloo, 2009a) also increase if 
the relativistic theory of turbulence (if formulated) was applied. Though the pointed kind of similarities does not 
spread to the described physical situations themselves, these similarities may suggest productive ideas. The 
definition of the turbulence spin, resulting in a substantial modernization of the average turbulence description 
(Heinloo, 2009a,b; 2008a,b; 2004), motivated by the analogy in mathematical formulations of turbulence 
problem and problems of fields of strong interaction, presents an example. 

The author thanks Dr. Aleksander Toompuu for participation in discussions of the touched by the discussed 
model problems. 
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