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Abstract 
In this work, we present a theoretical study of the magnetic susceptibility (χ ) of two-electron GaAs parabolic 
quantum dot (QD) under the combined effects of external pressure, temperature and magnetic field. We used the 
exact diagonalization method to obtain the eigenenergies by solving the two electron quantum dot Hamiltonian 
taking into account the dependence of the effective mass and dielectric constant on the hydrostatic pressure and 
temperature. The pressure and temperature show significant effects on the calculated QD spectra. Next, we 
investigate the behavior of the magnetization of a quantum dot as a function of external pressure, temperature, 
confining frequency and magnetic field. The singlet-triplet transitions in the ground state of the quantum dot 
spectra and the corresponding jumps in the magnetic susceptibility spectra have been shown. The comparison 
shows that our results are in very good agreement with the reported works. 
Keywords: Pressure; temperature; magnetic susceptibility; quantum dot, magnetic field; exact diagonalization 
1. Introduction 
Recent nanofabrication methods have it possible to design different types of quantum dots with the flexibility of 
controlling the size, shape, and number of electrons. These controllable physical properties of the 
zero-dimensional nanostructure makes it promising candidate for a wide range of device applications like quantum 
dot lasers, solar cells, single electron transistors and quantum computers (Ashoori et al., 1993; Ciftja, 2013; 
Kastner, 1992; Loss & DiVincenzo, 1998; Burkard, Loss, & DiVincenzo, 1999). 
Different approaches had been used to solve the two interacting electrons QD- Hamiltonian, including the presence 
of an applied magnetic field, and had obtained the eigenenergies and eigenstates of the QD-system as a function of 
magnetic field strength (Wagner, Merkt, & Chaplik, 1992; Taut, 1994; Ciftja & Kumar, 2004; Kouwenhoven, 
Austing, & Tarucha, 2001; Sanjeev Kumar, Mukhopadhyay, & Chatterjee, 2016; Kandemir, 2005; El-Said, 1995; 
El-Said, 1998; El-Said, 2000; Elsaid, Al-Naafa, & Zugail, 2008; Maksym & Chakraborty, 1990; De Groote, 
Hornos, & Chaplik, 1992). The energy spectra shows spin-singlet (S) and spin-triplet (T) ground state oscillations. 
These spin oscillations show themselves as transition peaks in the spectra of magnetic and thermodynamic 
quantities like magnetization (ߊ), magnetic susceptibility (ᆗ) and heat capacity (ܥ௩) (Nguyen & Peeters, 2008; 
Nammas, Sandouqa, Ghassib, & Al-Sugheir, 2011; Boyacioglu & Chatterjee, 2012; Helle, Harju, & Nieminen, 
2005; Schwarz et al., 2002; Räsänen et al., 2003; Climente, Planelles, & Movilla, 2004; Nguyen & Sarma, 2011; 
Rezaei & Kish, 2012; Dybalski & Hawrylak, 2005; Avetisyan, Chakraborty, & Pietiläinen, 2016). 
The aim of this work, is to investigate the magnetic susceptibility of two interacting electrons confined in a 
parabolic quantum dot which is presented in a magnetic field. The applied magnetic field is uniform and its 
direction is taken to be along z-axis that is perpendicular to the x-y plane of the QD. In addition, we consider the 
effects of the external pressure and temperature on the magnetic susceptibility curve. We initially applied the exact 
diagonalization method to solve the QD Hamiltonian and obtain the eigenenergies for various values of physical 
QD parameters. Secondly, we investigate the dependence of the QD magnetic susceptibility, as a thermodynamic 
quantity, on the pressure, temperature confining frequency and magnetic field strength. 
The rest of this paper is organized as follows: section II presents the Hamiltonian theory, computation 
diagonalization technique and the statistical thermodynamic relations of magnetic susceptibility for two 
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interacting electrons in the quantum dot. In section III, we give the numerical results for the energy spectra and the 
magnetic susceptibility of the QD. We devoted the final section for conclusions. 
2. Theory 
In this section we describe in detail the main two parts of the theory, namely: quantum dot Hamiltonian and exact 
diagonalization method and the magnetic susceptibility of GaAs quantum dot. 
2.1 Quantum Dot Hamiltonian 
The effective mass Hamiltonian for two interacting electrons confined in a QD by a parabolic potential in a 
uniform magnetic field ܤሬԦ =  :෠݇ can be written in a separable form as ܤ

෡ܪ  = ෡େ୑ܪ +  ෡୰  (1)ܪ

෡େ୑ܪ  = ଵଶ୑ ቂPሬሬԦୖ + ୡ୕ AሬሬԦ൫RሬሬԦ൯ቃଶ + ଵଶ Mω଴ଶRଶ  (2) 

෡୰ܪ  = ଵଶஜ ቂpሬԦ୰ + ୯ୡ AሬሬԦ(rԦ)ቃଶ + ଵଶ μω଴ଶrଶ + ୣమ஫|୰ሬԦ|  (3) 

Where ω଴ is the confining frequency, ߤ = ௠∗ଶ  is the reduced mass, M=2m is the total mass, ݍ = ௘ଶ is the 

reduced charge, Q=2e is the total charged and ϵ is the dielectric constant for the GaAs medium. ሬܴԦ =௥భሬሬሬሬԦା௥మሬሬሬሬԦଶ  and ݎԦ = ଶሬሬሬԦݎ − ଵሬሬሬԦ are the center of mass and relative coordinates, respectively. ωୡݎ = ௘஻௠∗ is the cyclotron 

frequency and ۯ = ૚૛ ۰ ×   .is the vector potential ܚ

The corresponding energy of this Hamiltonian equation (1) is: 

௧௢௧௔௟ܧ  = ஼ெܧ +  ௥  (4)ܧ

The center of mass Hamiltonian given by equation (2) is a harmonic oscillator type with well-known 
eigenenergies: 

௖௠ ୀ E୬ౙౣ,୫ౙౣܧ  = (2nୡ୫ + |mୡ୫| + 1)ℏ ω + mୡ୫ ℏனౙଶ   (5) 

where nୡ୫, mୡ୫ and  ߱ = ටఠ೎మସ + ߱଴ଶ are the radial, angular quantum numbers and effective confining frequency, 

respectively. 
However, the relative motion Hamiltonian part (H୰), given by equation (3) does not have an analytical solution for 
all ranges of ω଴and ωୡ. In this work, we applied the exact diagonalization method to solve the relative part of the 
Hamiltonian and obtain the corresponding eigenenergies  ܧ௥. 
2.2 Exact Diagonalization Method and Magnetic Susceptibility 
For non-interacting case the relative Hamiltonian in equation (3) is a single particle problem with 
eigenstates ⎸݊௥݉௥ > (Kouwenhoven, Austing, & Tarucha, 2001), 

 |n୰m୰ۧ = N௡ೝ୫౨ ୣ౟ౣ౨ದ√ଶ ஠ (αr)|୫౨|eି஑మ୰మ ଶ⁄ L୬౨|୫౨|(αଶrଶ) (6) 

where the functions L୬౨|୫౨|(αଶrଶ)  are the standard associated Laguerre polynomials . We calculated the 
normalization constant N௡ೝ୫౨  from the normalization condition of the basis,  < ݊௥݉௥⎸݊௥݉௥ >= 1 ,  which 
resulted in  

  ௡ܰೝ೘ೝ = ට ଶ୬౨!஑మ(୬౨ା|୫౨|)!  (7) 

We used ߙ as a constant which has the dimensionality of an inverse length 
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  α =  ට୫ன୦    (8) 

The eigenenergies of the QD Hamiltonian which are given by equation (4) consist of the sum of the energies for the 
center of mass Hamiltonian (ܧ௖௠) and the eigenenergies(ܧ௥)which are obtained by direct diagonalization to the 
relative Hamiltonian part. For interacting case, we applied the diagonalization method to solve equation (3) and 
find the corresponding exact eigenenergies for arbitrary values of ωୡ and ω଴. 
We can write the matrix element of the relative Hamiltonian part using the basis ⎹݊௥݉௥ > as, h୬୬ᇲ =  ൻn୰, m୰หH෡୰หnᇱ୰, ݉୰ൿ =< ݊௥݉௥⎸ − ℏଶ2ߤ ∇ଶ + 12 ଶ⎹ ݊௥́݉௥ݎଶ߱ ߤ   > +  
 < ݊௥݉௥ ⎸ ௘మఢ௥Ԧ ⎹  ݊௥ˎ݉௥ >.  (9) 

The first term in the right side of equation (9) is diagonalized as, 

  [(2n + |݉௭| + 1) ට(1 + ఊమସ ) − ఊଶ  ⎸݉௭⎹  ] ߜ௡௡ˎ  (10) 

Where the coulomb matrix energy can be given as 

  ஛√ଶ ට ୬ᇲ!୬!(୬ᇲା|௠೥|)! (୬ା|୫౰|)!   × I୬୬ᇲ⎹݉௭⎹   (11) 

where  ߛ = ఠ೎ఠబ and λ = ૛હℏன܍  are dimensionless parameters while߱ଶ = 1 + ఊమସ is the effective confining frequency. 

By changing the coordinate transformation to t-variable by direct substitution of ݎ = √௧ఈ  in the integrationI୬୬ᇲ  :௡ೝ௡ೝˎ, we can express the coulomb energy matrix element into the integral formܫ=

 < ݊௥݉௥ ⎸ ௘మఢ௥ ⎹ ݊௥ˎ݉௥ > ∝ |୬୬ᇲ|୫౰ܫ  = ׬ dt  t|୫౰|eି୲L୬|୫౰|(t)L୬ᇲ|୫౰|(t) ଵ√୲ ஶ଴   .  (12) 

We evaluated the above coulomb energy matrix element in a closed form by using the Laguerre relation given in 
the appendix A (Nguyen & Sarma, 2011).  
This closed form result of the coulomb energy reduces greatly the computation time needed in the diagonalization 
process. 
In our calculation, we have used the basis ⎸݊௥݉௥ > defined by equation (6) to diagonalize the relative QD 
Hamiltonian and obtain its corresponding eigenenergies ܧ௥. The exact diagonalization method is used in spanning 
the total Hamiltonian for the selected single electron basis and extract the lowest eigenvalues (eigenenergies) of 
the matrix. The procedure of increasing the number of linearly independent eigenstates is converging to the exact 
results. In each step the new energy results are compared with previous results from a smaller apace, until 
satisfactory convergence is achieved. 
Next step, we have calculated the magnetic susceptibility (ᆗ) from the mean energy 〈ܧ (ܶ) 〉  and the 
magnetization (M) of the two-electron quantum dot using the statistical thermodynamic relations: 

ܯ  = డ〈ா(்)〉డ஻     and   ߯ = డ ெడ ஻    ,  (13) 

where, the statistical energy 〈ܧ(ܶ)〉 is obtained by the help of the partition function.  
To include the effect of the pressure (P) and temperature (T) on the QD energy states and the magnetization we 
replace the dielectric constant ߳ with ߳௥(ܲ, ܶ) and the effective mass ݉∗ with ݉(ܲ, ܶ) in the QD Hamiltonian 
as defined by Equations 2 and 3, where ߳௥(ܲ, ܶ) and ݉∗(ܲ, ܶ) are the pressure and temperature dependent 
dielectric constant and electron effective mass, respectively. These pressure and temperature dependent mass 
parameters should be included in the energy spectrum Eq.4 and the wave functions basis eq.6 of the Hamiltonian. 
For quantum dot made of GaAs the dependency of ߳௥(ܲ, ܶ) and ݉∗(ܲ, ܶ) are given in appendix B (Rezaei & 
Kish, 2012). 
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The pressure and temperature effective Rydberg (ܴ௬∗ (ܲ, ܶ)) is used as the energy unit and given as follows: 

  ܴ௬∗ (ܲ, ܶ) = ௘మଶఢ(௉,்)௔ಳ∗ (௉,்)  (14) 

Where ܽ஻∗ (ܲ, ܶ) is the effective Bohr radius and given as: 

  ܽ஻∗ (ܲ, ܶ) = ߳(ܲ, ܶ)ħଶ/(݉∗(ܲ, ܶ)݁ଶ)  (15) 
So the effective Rydberg can be written as: 

  ܴ௬∗ (ܲ, ܶ) = ௘ర௠∗(௉,்)ଶ൫ఢ(௉,்)൯మħమ  (16) 

We change the pressure and temperature values to see their effects on the ground state energy of the QD 
Hamiltonian in both cases: zero (߱௖ = 0) and finite magnetic field (߱௖). Eventually, the ground state energies 
of the two electron-quantum dot system will be calculated as function of temperature (T), pressure (P), confining 
frequency (߱଴) and magnetic field cyclotron frequency (߱௖) .The obtained numerical results are displayed in 
the next section. 
3. Results and Discussions 
We present the effects of pressure, temperature, confining frequency and magnetic field cyclotron frequency on 
the magnetic susceptibility of two interacting electrons in a quantum dot made from GaAs material (effective 
Rydberg R*= 5.825 ܸ݉݁) in Figures 1 to 5 and Table 1. To achieve our aim, it is essential, as a first step, to 
investigate the dependence of the QD energy levels on the pressure and temperature. In Figure 1, we display the 
dependence of the QD energy states (m=0, 1, 2, 3 and 4) on the magnetic field,  ߱௖, for pressure P=10Kbar and  
temperature T=0.0K. We found that the overall shape of the spectra of the QD   remains the same while the 
eigenenergies are enhanced under the effect of external pressure. For zero magnetic field and zero pressure case, 
we have tested in Table 1, the computed numerical results against the corresponding ones taken from the work of 
Ciftja and Kumar (Ciftja & Kumar, 2004). The comparisons give excellent agreement between the energy spectra 
of two-electron QD Hamiltonian solved by both exact numerical and variational methods (Ciftja & Kumar, 2004; 
Ciftja & Kumar, 2004; Kandemir, 2005; Dybalski & Hawrylak, 2005). The QD spectra shows transitions in the 
ground state angular momentum (m) as the magnetic field increases. For example, we observed the first transitions 
in the angular momentum of the ground state of the QD system, from m=0 to m=1, occurs at ߱௖ ≈ 0.8 ܴ∗ while 
the second transition ( from m=1 to m=2 ) occurs at ߱௖ ≈ 1.2 ܴ∗. These transitions show themselves as cusps in 
the presented QD-magnetization curves. Figure 2, displays the energies of the quantum dot state (m=0) against the 
magnetic field for various pressure values: P =0, 10, 20 and 30 Kbar and Temperature T=0.0. For fixed particular 
value of the magnetic field, the figure clearly shows an enhancement in the energy level as the pressure increases. 
As the pressure increases the dielectric constant decreases leading to a significant electron-electron coulomb 
energy enhancement. Next we show the dependence of the magnetic susceptibility of the QD on the pressure, 
temperature and magnetic field. Figures 3a and 3b show the effects of the pressure on the dependence of the 
magnetic susceptibility on magnetic field. The magnetic susceptibility plotting is given for no external pressure 
( P=0.0 ) and for pressure value, P=30.0 Kbar, at temperature T=.01 K and confining energy frequency ߱଴ =0.5 ܴ∗ . Figures 3a and 3b show that as the pressure increases: P=0.0 Kbar to 30 Kbar, the absolute value of the 
magnetic susceptibility ( ⎸ᆗ ⎸) at ߱௖ = 0.0 also increases. In addition the heights of the peaks enhance as the 
magnetic field increases .For example, we can observe the changes in the height of peak number five which is 
located at ߱௖ ≈ 3.8ܴ∗. This magnetic susceptibility behavior, under the effect of pressure, can be attributed to the 
enhancement of the electron-electron repulsive coulomb interaction energy in the quantum dot. As the pressure 
increases the dielectric constant,߳(݌), decreases and thus the coulomb interaction energy term, ௖ܸ ≈ ଵఢ(௣)௥ , in the 
QD-Hamiltonian, enhances. This leads to a significant energy increase in the total energy state of the electron 
making the electron unstable. The electron in this case makes a jump to another state with higher angular 
momentum (m) in order to reduce its coulomb energy, and in effective its total energy decreases, to become more 
stable. Figure 4 shows the effect of temperature on the QD magnetic susceptibility plot by changing the 
temperature from T = 0.01K (Figure 3a) to T=1K (Figure 4) for no external pressure (P=0.0 Kbar) and the same 
confining frequency, ߱௖ = 0.5ܴ∗ . The magnetic susceptibility plot shows again a significant temperature 
dependence. We can clearly see the significant reduction in the height of magnetic susceptibility peaks as the 
temperature increases from T=0.01K to T=1K .For example,only the first peak located at ߱௖ = 0.4 ܴ∗ remains, 
while the rest of the peaks at high magnetic field strength almost disappear due to the thermal fluctuations and the 
magnetic susceptibility becomes smooth. Furthermore, we study, in Figure 5, the effect of confining frequency ߱଴ 
on the shape of the magnetic susceptibility spectra. We consider different values of confining frequencies:    
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߱଴ = 0.5 ܽ݊݀ 0.8 ܴ∗ keeping the temperature and the pressure parameters both are unchanged: P=0.0 kbar and 
T=0.01 K. The magnetic susceptibility spectra calculated at ߱଴ = 0.5ܴ∗ and ߱଴ = 0.8ܴ∗ are given in Figure 3a 
and Figure 5, respectively. The comparison of the spectra in both figures clearly shows a significant confining 
frequency dependence ߱଴, which results in shifting the peak positions of the magnetic susceptibility spectra as 
clearly shown. These peaks- shift behavior can be understood in this way. As we increase the confining 
frequency, ߱଴, the electron in the quantum dot becomes more confined and this electron energy enhancement 
shifts significantly the location of the energy level crossings to a higher magnetic field strength. For example, our 
confining frequencies: ߱଴ = 0.5 ܽ݊݀  0.8 ܴ∗ corresponds to transition magnetic field values: ߱௖ =0.4  ܽ݊݀ 0.9 ܴ∗, respectively. The eigenenergies are obtained by diagonalizing the full QD-Hamiltonian matrix 
given by equation (9). In all steps of calculations, the numerical convergence is achieved. For example, the ground 
state energy calculated at ߣ = 3 in Table 1, converges to ܧ௥ =4.324, 4.320, 4.319 and 4.319 meV as the number 
of basis in the matrix elements ܵ௣ = 5, 20, 40 and 50, respectively. 
 

 

Figure 1. The computed energy spectra of quantum dot versus the strength of the magnetic field for ω଴ = 0.5R∗, 
T=0K, P=10Kbar and angular momentum m = 0,1,2,3,4 

 

 
Figure 2. The computed energy spectra of quantum dot versus the strength of the magnetic field for ૑૙ = ૙. ૞܀∗, 

T=0K, m=0 and various pressures (P=0 Kbar solid; P=10Kbar dashed; P=20Kbar dotted and P=30Kbar thick) 
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Figure 3a  

 

 
Figure 3b 

Figure 3. Magnetic susceptibility ( ࣑ ) of the two electrons quantum dot as function of magnetic field strength, 
calculated at fixed confining frequency ࣓૙ = ૙. ૞ࡾ∗, pressure T=0.01K and different temperatures : a) P=0.0 

Kbar  and b) P=3.0 Kbar 
 

 
Figure 4. Magnetic susceptibility ( ߯ ) of the quantum dot as function of magnetic field strength at fixed 

confining frequency ߱଴ = 0.5ܴ∗, Temperature T=1 K and pressure P= 0 Kbar 
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Figure 5. Magnetic susceptibility ( ߯ ) of the quantum dot as function of magnetic field strength at fixed 

confining frequency ߱଴ = 0.8ܴ∗, Temperature T=0.01 K and pressure P= 0 Kbar 
 
Table 1. The ground state energies of QD (in ܴ∗) as a function of dimensionless coulomb coupling parameter ᆋ 
obtained from exact diagonalization method (second column) compared with reported work (third column) 
Reference (Ciftja & Kumar, 2004) ᆋ E (Present work) E(Ciftja & Kumar, 2004) 

0 2.00000 2.00000 
1 3.000969 3.00097 
2 3.721433 3.72143 
3 4.318718 4.31872 
4 4.847800 4.84780 
5 5.332238 5.33224 
6 5.784291 5.78429 
7 6.211285 6.21129 
8 6.618042 6.61804 
9 7.007949 7.00795 
10 7.383507 7.38351 

 
4. Conclusions 
The electronic energy levels and the magnetic susceptibility of two interacting electrons in the quantum dot have 
been calculated as a function of pressure, temperature confining frequency and magnetic field. The magnetic 
susceptibility spectra shows some peak structures which correspond to the energy levels and the associated 
spin-singlet-triplet transitions in the ground state of the quantum dot .The calculations show that the absolute value 
of the magnetic susceptibility ( ⎸ ߯⎹ ) and the height of the transition peaks in the susceptibility spectra enhances 
also as the pressure increases, while keeping the values of temperature and magnetic field strength unchanged. In 
addition, the magnetic susceptibility spectra shows a temperature dependent behavior. The height and the number 
of the transition peaks in the magnetic susceptibility spectra changes significantly due to the thermal fluctuations. 
Furthermore, the confining frequency has a significant effect on the magnetic susceptibility spectra. We have 
observed that, as the confining frequency increases, the energy of the electrons increases and thus the positions of 
the energy level crossings are shifted towards a higher transition field strength. This in turn leads to changes in 
locations of the peaks spectra in the magnetic susceptibility spectra of the quantum dot. 
Appendix A: Properties of the Laguerre polynomials 
The following Laguerre relation was used to evaluate the coulomb energy matrix element in a closed form 
(Nguyen & Sarma, 2011): 

׬  t஑ ିଵeି୮୲L୫஛ (at)L୬ஒ (bt)dtஶ଴ = 

 ୻(஑)(஛ାଵ)ౣ(ஒାଵ)౤୮షಉ୫!୬! ∑ (ି୫)ౠ(஑)ౠ(஛ାଵ)ౠ ୨! ቀୟ୮ቁ୨ ∑ (ି୬)ౡ(஑ା୨)ౡ(ஒାଵ)ౡ ୩! ቀୠ୮ቁ୩୬୩ୀ଴୫୨ୀ଴   (A 1) 
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Appendix B: The pressure and temperature dependent dielectric constant and electron effective mass. 

 ∈௥ (ܲ, ܶ) = ൜12.74 exp(−1.73 × 10ିଷܲ) exp[9.4 × 10ିହ(ܶ − 75.6)] for T < 200 K13.18 exp(−1.73 × 10ିଷܲ) exp[20.4 × 10ିହ(ܶ − 300)] forT ≥ 200 K              (B 1) 

 ݉∗(ܲ, ܶ) = ൤1 + 7.51 ൬ ଶா೒г (௉,்) + ଵா೒г (௉,்)ା଴.ଷସଵ൰൨ିଵ ݉଴   (B 2) 

,ܲ)௚гܧ   ܶ) = ቂ1.519 − 5.405 × 10ିସ ்మ்ାଶ଴ସቃ + ܾܲ + ܿܲଶ   (B 3) 

Where ݉଴is the free electron mass, ܧ௚г(ܲ, ܶ) is the pressure and temperature dependent energy band gap for 
GaAs quantum dots at г point, b= 1.26× 10ିଵeV GPaିଵand c = -3.77× 10ିଷeV GPaିଶ (Rezaei & Kish, 2012). 
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