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Abstract 

Nutritional composition of a composite sample of whole green crabs, Carcinus maenas (L.), was undertaken to 
evaluate efficacy as a forage fish replacement for seafood-meal manufacture. Whole green crabs sampled from 
New Hampshire waters were ground together and analyzed for proximate profile (moisture, lipid, protein, fiber, 
and ash), fatty acid profile, amino acid profile, mineral composition, and mercury content. Green crab mince 
contained 16.55 ± 0.29% ash, 12.27 ± 0.25% protein, and 0.21 ± 0.07% lipid, and comprised all amino acids 
essential for chickens and most species of fish. Fatty acid composition of ground green crab was 67.98% 
unsaturated, and 23.29% saturated, and was richer in eicosapentaenoic acid (EPA) than docosahexaenoic acid 
(DHA). Levels of mercury in green crab mince were below testable limits. The nutritional profile of green crab 
mince was evaluated relative to the nutritional profile of menhaden from the literature, and possible agrifeed 
applications for whole green crab were considered. Green crab showed great potential as a forage fish replacer in 
seafood-meal applications for chickens and ash tolerant species of fish. 

Keywords: DHA, menhaden, proximate, fishmeal, crabmeal, mercury, fatty acid, amino acid 

1. Introduction 

Fishmeal is the primary protein content in feed formulated for finfish and is the largest variable expenditure in 
the global aquaculture industry (Naylor et al., 2009). Its use in the aquaculture industry has increased 
dramatically in the past decade - from 33% in 2000 to 73% in 2010 (Shepherd, 2011). However as of 2010, a 
significant proportion of world fishmeal also is used in terrestrial agriculture, particularly in feed for chickens 
(5%) and swine (20%; Shepherd, 2011). The wild-caught forage fisheries (e.g. menhaden, anchovies, sardines, 
capelin; Naylor et al., 2009) from which this fishmeal is produced are highly volatile (McCoy, 1990; Tacon & 
Metian, 2008; Bimbo, 2009; Naylor et al., 2009), and seventy-five percent are fully exploited or even 
over-exploited (McCoy, 1990; FAO, 2002; Tacon & Metian, 2008; Bimbo, 2009). The Fisheries and Agriculture 
Organization of the United Nations estimates that by 2020, existing fishmeal/fish oil resources will no longer be 
able to support industry demand (FAO, 2002). Numerous fishmeal subsititutes (either whole or partial 
replacements), including plant derivatives and seafood by-products, already are being tested in aquaculture and 
agriculture as forage fish prices increase. However, plant and byproduct aquafeeds are often incomplete sources 
of protein and fatty acids for crustaceans, finfish, and livestock. Widespread invasive marine species represent 
another potential fishmeal replacement group, especially those that do not support commerical fisheries. 

The objective of this study was to analyze the nutritional profile of whole green crab and compare it to reported 
nutritional profiles of forage fish commonly used for the production of fishmeal in order to assess green crab as a 
possible agrifeed and aquafeed ingredient. Green crabs, Carcinus maenas (L.), are an invasive and 
globally-dispersed species present on both the east and west coasts of North America, with severe negative 
ecological impacts on native species (Glude, 1954; Welch, 1968; Carlton & Cohen, 2003; DeGraff & Tyrell, 
2004). Green crabs also represent a plentiful, easily-harvested, and underutilized nutrient-rich biomass, although 
their biomass is largely unquantified as their use in human diets is limited. A fishery for C. maenas as a delicacy 
for humans and as a scent for seafood-based products (Pascoal et al., 2009) occurs in Portugal, where the 
majority of the crabs is exported live to Spain for consumption or re-export (Gomes, 1988). However, because 
green crabs are relatively small-bodied, shelling by hand is too labor intensive for a green crab meat product to 
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be profitable, especially in countries where labor is expensive (Skonberg & Perkins, 2002). In addition, soft-shell 
green crab is unlikely to be cost-effective either due to high costs associated with harvesting premoult crabs and 
the labor-intensive operation of shedder facilities (Gaudé & Anderson, 2011). The nutritional composition of a 
representative sample (as caught in the field) of whole green crabs has not yet been published, and this is a 
crucial first step for evaluating whole green crab as a forage fish replacement. Both proximate and 
fatty-acid/amino-acid composition analysis provide information needed to formulate, test, and cost-analyze 
potential agriculture (feed additive or partial fish meal replacement) markets for this invasive species. Ash 
content and composition can be a limiting factor in some aquaculture applications because of intestinal and 
visual ailments associated with high ash contents in freshwater fish diets (Richardson et al., 1985). For these 
reasons, calcium, zinc, and potassium content of the crabs also need to be quantified. Many heavy metals 
associated with anthropogenic activities are present in estuarine sediments and it is known that C. maenas 
accumulates As, Cu, Zn, Fe, Cd, Mn, Cu, and Hg from the environment (Andersen & Depledge, 1994; 
Bjerregaard & Depledge, 2002; Elumalai et al., 2007). However, there is an absence of data to support 
biomagnification of many of these metals, with the exception of Hg (ie. methylmercury; Kennish, 1992). In this 
study, crabs were harvested from a moderately developed area, therefore, green crab mince was tested for Hg as 
an indicator of industrial contamination. Previously published nutritional analyses of green crabs include 
proximate analysis, fatty acid profile, and amino acid profile of claw and leg meat separately (Skonberg & 
Perkins, 2002), and of leg meat mince (Naczk et al., 2004). Chitin, total carotenoids, total fatty acid, and total 
nitrogen content of C. maenas shell (Naczk et al., 2004), and fatty acid profile of C. maenas hepatopancreas 
(Styrishave & Andersen, 2000) also have been reported. However, none of these studies used a representative 
random sample of the range of crabs (size, sex, etc.) that would be caught in a commercial crab trap, and none of 
them considered the nutritional profile of the whole animal. The current analysis provides information omitted 
from previous studies regarding the nutritional composition of whole green crabs. In this study, the nutritional 
profile of whole, ground green crab was analyzed in order to determine if green crabs would be appropriate for 
partial replacement of fish meal in agriculture and aquaculture applications. 

2. Method 

Green crabs were collected from the Hampton-Seabrook Estuary (HSE), New Hampshire, U.S.A. in March 2010 
(Figure 1). The HSE, located at the coastal border of New Hampshire and Massachusetts, is a temperate, shallow, 
sandy and muddy-bottom basin fed by five rivers and two smaller streams (Fairchild et al., 2008). Crabs were 
caught in rectangular plastic-coated wire mesh traps measuring 61 x 28 x 31 cm with a single vertical chute in 
the top measuring 15 x 5 x 10 cm deep, and baited with a single cod rack each weighing approximately 454 g. 
From the center of three separate traps, 1.86kg of whole crabs (± 0.05 kg) were selected, snap-frozen on dry ice, 
and sent directly to New Jersey Feed Labs (Ewing, New Jersey, U.S.A.) for nutritional analyses. 

Samples first were finely pulverized in a Mikro-pul sample mill and 14g of each sample was reserved for testing. 
Proximate analysis of these samples was accomplished according to the Association of Analytical Chemists 
(AOAC) methods 990.03, 930.15, 920.39, 978.10, and 942.05. Calcium, phosphorus, and zinc concentrations 
were assessed via AOAC methods 985.01 and 984.27. Mercury content was assessed via AOAC method 975.08, 
amino acid profiles were assessed via AOAC methods 994.12, 985.28, 988.15, and 994.12, and fatty acid 
profiles were determined via AOAC method 963.22 (Horwitz & Latimer, 2011). 

For consideration as a forage fish replacement, all nutritional parameters for whole green crab mince (GCM) 
were compared to values published in the literature of whole ground menhaden (WGM), Brevoortia spp., which 
comprises approximately 90% of forage fish material for U.S. fishmeal production, annually, by weight (IFFO, 
2009; IFFO, 2011).Values, averages, and standard deviations of the three ground green crab composites are 
reported. 
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Figure 1. Location of sampling site, as denoted by ‘X’, in the Hampton-Seabrook Estuary (HSE), New 

Hampshire, U.S.A., with inset showing the relative location of the HSE 

 

3. Results 

The proximate composition of GCM is reported in Table 1. Green crab mince contained all amino acids assayed, 
including those essential to fish and chickens (Table 2). The largest amino acid components were glutamic acid 
1.26% wwb, valine 0.74% wwb, aspartic acid 0.72% wwb, and glycine 0.66% wwb. Because whole GCM 
contains shell material, a discrepancy exists between the higher calculated “protein content”, 12.27%, (Table 1) 
and the “amino acid content”, 7.45%, of GCM (Table 2). 

Mineral content of green crab mince was mostly calcium, accounting for 5.70% of wet sample mass, followed by 
potassium (0.22%), then zinc (3.778*10-4%). Mercury was below testable limits (< 5.00*10-6%) in all three 
samples (Table 3). 

Fatty acid composition of GCM was 67.98% unsaturated and 23.29% saturated (Table 4). The primary saturated 
fatty acid in GCM was palmitic acid (16:0), contributing 15.56% of total fatty acids, or 66.81% of total saturated 
fat content. The largest sources of unsaturated fatty acid were oleic (18:1ω9 and 18:1ω7), comprising 16.59% of 
total fatty acid and 22.27% of unsaturated fatty acids, eicosapentanoic (EPA, 20:5ω3), comprising 9.56% of total 
fatty acid and 12.84% of unsaturated fatty acids, and docosahexanoic (DHA, 22:6ω3), comprising 8.43% of total 
fatty acid and 11.31% of unsaturated fatty acids. Lipid of whole GCM was 3.06% linoleic acid (18:2 ω6), and 
0.98% linolenic acid (18:3ω6 and 18:3ω3; Table 4). 
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Table 1. Proximate composition of whole green crab mince (GCM), reported as % of sample (wet weight basis) 
± 1 standard deviation (θ). N=3 

Proximate component GCM Average ±θ

Moisture  67.96 ±0.46 

Ash  16.55 ±0.29 

Protein  12.27 ±0.25 

Fiber  2.87 ±0.15 

Fat  0.21 ±0.07 

 

Table 2. Amino acid content of whole green crab mince (GCM), reported as % of sample (wet weight basis) ± 1 
standard deviation (θ). N=3. Amino acids essential to fishf and chickensc are denoted 

Amino Acid GCM Average ±θ

Methioninef,c 0.17 ±0.01 

Cystinec  0.06 ±0.00 

Lysinef,c 0.36 ±0.01 

Phenylalaninef,c 0.30 ±0.01 

Leucinef,c 0.46 ±0.02 

Isoleucinef,c 0.33 ±0.01 

Threoninef,c 0.28 ±0.00 

Valinef,c 0.74 ±0.06 

Histidinef,c 0.15 ±0.00 

Argininef,c 0.46 ±0.01 

Glycine 0.66 ±0.02 

Aspartic Acid 0.72 ±0.01 

Serine 0.23 ±0.00 

Glutamic Acid 1.26 ±0.02 

Proline 0.47 ±0.02 

Hydroxyproline 0.01 ±0.00 

Alanine 0.47 ±0.01 

Tyrosine 0.30 ±0.02 

Tryptophanf,c 0.02 ±0.00 

TOTAL 7.45 ±0.11 

 

Table 3. Content of selected minerals in whole green crab mince (GCM) ± one standard deviation (θ), reported as 
percent of sample (wet weight basis). N=3 

Mineral GCM Average ± θ 

Calcium 5.70 ±0.08 

Zinc 3.778*10-4 ±1.460*10-4

Potassium 0.22 ±0.01 

Hg  <5.00*10-6 ±0.00 

 

 

 



www.ccsenet.org/sar Sustainable Agriculture Research Vol. 2, No. 3; 2013 

130 
 

Table 4. Fatty acid composition (% of total oils) of whole green crab mince (GCM) ± one standard deviation (θ). 
N=3. Fatty acids essential to chickensc and some species of fishf are noted 

Fatty Acid GCM Average ± θ

S
at

ur
at

ed
 

12:0 0.28 ±0.08 

14:0 1.90 ±0.11 

15:0 1.04 ±0.01 

16:0 15.56 ±0.74 

17:0 0.90 ±0.05 

18:0 3.56 ±0.30 

20:0 0.05 ±0.09 
U

ns
at

ur
at

ed
 

14:1 0.24 ±0.03 

16:1 8.06 ±0.29 

16:2 0.26 ±0.04 

17:1 0.95 ±0.14 

18:1ω9 15.14 ±1.40 

18:1ω7 4.88 ±0.25 

18:2ω6c  3.06 ±0.84 

18:3ω6 0.19 ±0.06 

18:3ω3c 0.79 ±0.05 

18:4ω3 0.28 ±0.24 

20:1ω11 2.08 ±0.15 

20:1ω9 3.65 ±0.26 

20:1ω7 2.23 ±0.21 

20:2ω6 1.57 ±0.08 

20:3ω3 0.18 ±0.21 

20:4ω6 2.58 ±0.19 

20:5ω3f 8.73 ±0.57 

22:1ω11 2.99 ±0.40 

22:1ω9 0.28 ±0.24 

22:4ω6 0.51 ±0.06 

22:5ω3 1.28 ±0.14 

22:6ω3f 7.69 ±0.52 

24:1 0.37 ±0.12 

Other 8.72 ±1.23 

Total %ω3 18.95 ±1.64 

Total %ω6 7.91 ±0.51 

Total% Saturated 23.29 ±1.37 

Total % Unsaturated 67.98 ±6.47 

 

4. Discussion 

Because green crabs sampled in this study were drawn from one location within one estuary at one time of year, 
it is expected that nutritional composition of green crabs from a different estuary, location, or season would vary 
(Styrishave & Andersen, 2000). Moisture content of whole GCM resembles that of WGM reported by several 
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researchers previously (Hale & Bauersfield, 1978; Lanier et al., 1983), but GCM is lower in protein and fat and 
higher in ash. Protein content was determined by AOAC 990.03, a combustion method in which protein content 
is back-calculated with a conversion factor from total nitrogen present in the sample. The shells of crustaceans 
are rich in chitin, a nitrogenous, long-chain polymer of 2-acetoamido-2-deoxy-β-D-glucopyranose (C8H15NO6; 
Manni et al., 2010). Green crab shell contains 12.6-14.5% chitin, accounting for 2.6-3.11% of total nitrogen in 
the sample (Naczk et al., 2004), explaining most of the discrepancy between calculated protein content and 
protein content by amino acid analysis. For amino acids essential to fish and chickens, GCM was much lower in 
lysine and tryptophan and much higher in valine than reported values for menhaden hydrolysate (Hale & 
Bauersfield, 1978; Table 2). Levels of all other essential amino acids were comparable to menhaden reference 
values from literature (Hale & Bauersfield, 1978). Green crab mince contained 5.70% calcium (wwb), compared 
to a menhaden reference value of 1.29% (Scott & Latshaw, 1993) and also was much lower in zinc than 
menhaden reference values (37.78 ppm vs. 67.00 ppm; Scott & Latshaw, 1993; Table 3). The potassium content 
of GCM (0.22%) was roughly identical to that previously reported for menhaden (0.21%; Scott & Latshaw, 1993; 
Table 3). GCM mercury levels were below testable limits (< 0.05 ppm; Table 3); 1.98 ppm is typical for 
menhaden (Scott & Latshaw, 1993). GCM was richer in DHA (7.69 vs. 7.00%) and lower in EPA (8.73% vs. 
13.50%) than WGM literature values, and slightly higher in arachidonic acid (ARA, 20:4ω6; 2.58 vs. 1.00%; 
Joseph, 1985). Lipid of whole GCM was 3.06% linoleic acid (18:2 ω6) compared to 1.10% for WGM literature 
values, and 0.98% linolenic acid (18:3ω6 and 18:3ω3) compared to 1.40% based from literature values for 
WGM (Joseph, 1985; Table 4). 

Without further processing, the relatively high calcium content of GCM renders it a poor replacement for forage 
fish in diets for several species. For example, Chinook salmon, Oncorhynchus tshawytscha, are susceptible to 
cataracts, nephrocalcinosis, suppressed appetite, general decline in growth rates, and increased mortality on high 
(51 g/kg) calcium diets; the putative cause is diminished zinc bioavailability (Richardson et al., 1985). Juvenile 
Atlantic salmon, Salmo salar, show reduced growth on dietary ash levels above 17.5%, but tolerate ash up to this 
inclusion as long as minimal zinc requirements are met (100ppm; Shearer et al., 1992). Channel catfish, 
Ictalurus punctatus, fingerlings also present reduced growth rates on diets supplemented with 0.5 and 2.0% 
CaCO3 and CaCl2, respectively (Richardson et al., 1985; Gatlin & Scarpa, 1993). Despite its high ash content, 
GCM could be demineralized easily with appropriate chelators, but that would result in an additional expense to 
processing. An alternate option is to use GCM as a fishmeal replacement for ash-tolerant cultured species like 
cod, Gadus morhua, flatfishes, and cobia, Rachycentron canadum. It is typical for 30% of wild summer flounder, 
Paralichthys dentatus, wild cod gut contents, and 78% of wild cobia gut contents (by weight) to consist of 
crustaceans (Latour et al., 2008; Fines & Holt, 2010; Krumsick & Rose, 2012). Cod show excellent growth 
without reduced feed efficiency when fed crab by-product meal at inclusions of up to 176g/kg diet, the highest 
level tested (Toppe et al., 2006). Crab meal has been explored as a diet finisher for southern flounder, 
Paralichthys lethostigma, on speculation that it would change sensory properties of the final fillet just prior to 
slaughter to enhance product value (González et al., 2006). After southern flounder were fed a high-ash diet 
consisting of 5% crab meal for fishmeal replacement, the fillets had a similar proximate composition but less 
fishy flavor (considered a positive sensory attribute) than fish fed a standard fishmeal diet (González et al., 2006). 
Unfortunately, feed efficiency was not considered. For cobia, organic matter of crab byproduct meal has greater 
apparent digestibility (94.1 ± 8.9%) than both shrimp meal (64.1 ± 26.2%) and fish meal (56.7 ± 9.9%) at the 
same level of inclusion (30%). Protein, lipid, and total energy showed no significant difference in apparent 
digestibility among the three cobia diets (Fines & Holt, 2010). 

For terrestrial applications, chickens may be suitable for GCM replacement or supplementation, as chickens have 
high dietary ash requirements and also consume large amounts of fish meal (Delgado et al., 2003; IFFO, 2007; 
Leeson & Summers, 2009). Broiler chickens have shown good growth on fishmeal replacement diets utilizing 
crab mussel, Mytulis edulis, and bone meals, while laying hens have demonstrated a good tolerance for red crab, 
Pleuronectes planipes, and shrimp, Litopenaeus spp., meals, causing no organoleptic differences in eggs 
(Adesehinwa et al., 2005; Jönsson & Elwinger, 2009; Carranco et al., 2011; Etuk et al., 2012). 

Chickens, cobia, some flatfish species, and cod possess endogenous digestive chitinases which may provide 
energetic benefit from GCM (Danulat & Kausch, 1984; Suzuki et al., 2002; Kurokawa et al., 2004; Fines & Holt, 
2010). Because it contains the whole crab, GCM is a richer source of protein than many shellfish and fish 
byproducts. Fish and chickens fed a whole GCM as a fishmeal replacer would be expected to have better 
condition factors than those fed seafood byproduct meals. 

Although GCM contains all essential amino acids for fish and chickens, GCM protein may not be complete for 
fish and chickens due to the relatively low amount of lysine and tryptophan (as compared to menhaden). 
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Complete replacement of fishmeal in formulated diets may not be possible without tryptophan and lysine 
supplementation, depending on the target farmed species and processing conditions used in producing green crab 
meal. The largest amino acid components of whole green crab protein were glutamic acid 1.26% wwb, valine 
0.74% wwb, aspartic acid 0.72% wwb, and glycine 0.66% wwb; these amino acids have all been implicated as 
important finfish feeding stimulants in aquaculture (Carr et al., 1996). Whole green crab mince in fact may 
improve the palatability of a formulated diet for fish. Chickens are also an excellent test market for GCM 
because they can self-select for the correct ration of protein if provided with grain and protein food resources 
(Forbes & Shariatmadari, 1994). 

Fish and chickens have similar essential fatty acid requirements. In vertebrates, ω-unsaturated fatty acids help 
maintain membrane fluidity and are involved in enzyme activation and neurotransmission (Stickney, 1994). 
Vertebrate metabolism generally allows for desaturation and elongation of short-chain ω3 fatty acids to 
long-chain ω3 fatty acids and short-chain ω6 fatty acids to long-chain ω6 fatty acids, but not from ω3 to ω6 or 
vice versa. Both fish and chickens need ω-unsaturated fatty acids for normal growth and development. For 
poultry, linoleic acid (18:2ω6) and linolenic acid (18:3ω3) are essential fatty acids. Chickens and chicks fed a 
diet deficient in linoleic acid (generally regarded to be < 1% of the diet) will suffer retarded growth, an increased 
water requirement, fatty liver, reproductive difficulties, and immune insufficiency (Watkins, 1991). Laying hens 
can require up to 5% dietary linoleic acid for egg production (Watkins, 1991; Zornig et al., 2001). Chickens also 
require linolenic acid in their diet for production of EPA and DHA (Watkins, 1991). Some fish are able to 
desaturate and elongate linolenic and linoleic acid to longer chain polyunsaturated fatty acids, but in many 
species this is not done with any efficiency (Stickney, 1994). Most fish require both EPA and DHA from their 
diets. For juvenile turbot, Scophthalmus maximus, and perhaps other flatfish species, it has been recommended to 
enrich feed with high levels of EPA and DHA and to keep levels of arachidonic acid (ARA; 20: 4ω6) low in 
order to prevent malpigmentation (Hamre, 2006). For juvenile cobia, DHA is required for optimal growth 
performance, but EPA appears to be only a trace requirement (Trushenski et al., 2011). Data regarding fixed 
DHA and/or EPA requirements for cod is lacking, although some larval studies have examined fatty acid 
supplementation relative to normal rotifer and Artemia diets (Cutts et al., 2006). Unfortunately, the requirements 
for juveniles (which would be candidates for a pelletized feed) are often dissimilar to those of larvae. This is a 
promising area for future research. 

The overall ratio of EPA+DHA to ARA in green crab lipid is lower than that of menhaden but may not be low 
enough to merit fortification. The notably high linoleic acid level in GCM would make it a good candidate for 
chicken feed. The exact lipid content requirement for the diets of most commercially-raised species of fish is 
usually assumed to be around 10% of the dry weight of the diet, which is assumed to spare all protein intake for 
anabolism (Halver & Hardy, 2002). Lipid only accounts for about 2.0% of the dry weight of GCM, but 
separation of solids from liquids during the cooking and pressing stages of processing GCM into meal would 
allow processors to enrich the meal to the desired fat content by the addition of fat separated from a larger 
starting volume of GCM. Protein and ash left over as a result of this process could be utilized in some other 
capacity, such as fertilizer. 

In conclusion, GCM has favorable nutritional characteristics for some applications in forage fish replacement. 
Continuation of this work in the form of a diet study (in fish or chickens) should be considered, as green crabs 
are plentiful and easy to capture (Fulton et al., 2013), and could form the basis of a new fishery in New England. 
In addition, controlling green crabs via harvest could perform a valuable ecological service and may increase 
yield in other local fisheries by limiting the effects of this invasive predator. 
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