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The radius and the constant permittivity of additional cylindrical are varied in order to observe how the path loss, 
and the bandwidth of CDRA are affected and in mean time to get the optimum of these values, while preserving 
the radiation characteristics of the dominant mode (Chair, Kishk, & Lee, 2007; Kishk, Auda, & Ahn, 1989).  

2. Method 
2.1 CDRA Theory 

The preferable mode for broadside radiation is the HEM11δ mode, and for filter designs the mode TE01δ because 
of its high Q factor performance, while for dual band radiating purposes the TM01δ mode is chosen for its 
Omni-directional pattern (Kajfez & Guillon, 1986). 

The cylindrical resonator antenna under investigation has a height and radius d and a, respectively. The ground 
plane, assumed to be of finite extent, supports the dielectric cylinder. The simple way of excitation of the lowest 
mode of the structure which is the HEM mode is by using a coaxial probe, vertically orientated with height equal 
to h and located at distance equal to ρ far from the centre of DRA on phi = 0° as on Figure 1. 

The characteristics of the CDRA can be divided into two parts, resonate frequency and field distribution: 

2.1.1 Resonant Frequency 

The resonant frequency of the cylindrical DRA was calculated with (1) described in Kajfez and Guillon (1986). 
This gives a frequency of 1.96 GHz for the single CDRA. In practical applications, we are interested in the 
fundamental (dominant) mode, which has the lowest resonant frequency. It has been found that the fundamental 
mode is the HEM110 mode. The resonant frequency given by Equation (1) is in function of: 

• Dielectric constant “εr’ 

• Radius “a” 

• Height “d”  

• C is the velocity of light in free space 

 .f 2.208 C/2π d ε 1 1 0.7013 0.002718   (1) 

The frequency obtained by the Eigen mode solver of HFSS simulator is very close to the value obtained by 
Equation (1) as on Table 1. 

 
Table 1. Frequency got by simulator 

Configuration antenna Freq (Eigen mode solver) Permittivity 

Single DRA 1.94 GHz 36.7 

 
2.1.2 Field Distributions 

The filed distribution of antenna, based on a cylindrical dielectrics resonator looks like the dipole when the 
radiations of low fundamental modes are in the cavity. In mean time the adjustment of antenna shape, size or 
alimentation position could maximize the bandwidth and change the antenna behavior to multi-mode antenna 
(Kajfez & Guillon, 1986; Kishk, Auda, & Ahn, 1989). 

The field pattern inside the antenna of the mode TM01δ shows behavior of a quarter-wavelength monopole and 
for the mode HEM11δ mode looks ideally like half-wave dipole. The field line appears to be generated by 
magnetic dipole with a dipole axis located horizontally, on the equatorial plan of CDR (Kajfez & Guillon, 1986). 
During the simulation, more than one mode may be excited by the feeding mechanism that affects the radiation 
pattern trend. Furthermore, the ground plane will be fixed as finite dimension (Kajfez & Guillon, 1986; Kishk, 
Auda, & Ahn, 1989). On the numerical simulation, the effects are taken in a consideration. 

3. Principles of Investigation 
3.1 CDRA Composed by Single Cylinder 

Under the HFSS simulator the proposal CDRA as depicted on Figure 2 is composed by only single ceramic 
cylinder with the following characteristics: permittivity = 36.7, radius a1 = 12.65 mm and height d1 = 9.6 mm 
that d / a = 0.75 <1). The CDRA is fed energy by a 50 Ω Coaxial line with width r = 0.65 mm, length h = 5.5 mm 
at position ρ = 11 mm and over a ground plan of 75 X 75 mm. 
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From Table 3 it is observed that the impedance bandwidth (return loss 10 dB) increases when εr2 increase. The 
computed impedance bandwidths for εr2=70 it the more large at 900 MHz. 

Otherwise by increasing the permittivity of the CDRA new antenna behavior appear as multi- frequencies mode 
over SFH band. 

4. Conclusion 
In this paper we have presented one of many approaches which using finite element methods by using HFSS 
simulator tools, the effect on resonant frequency and return loss by changing dimensions of the antenna in terms 
of radius, height and permittivity of the cylinder were studied. 

For suitable application it is recommended that the choice of permittivity and the dimension of the antenna be 
considered carefully because they have a great affect on the characteristics in terms of bandwidth and resonant 
frequency.  

To achieve large band and multimode antenna behavior, the feeding mechanism should be adjusted into suitable 
position near the edge of the cylinder, and the ratio of the radius over height should be minimal. 

The concept of having Multi band antenna has been achieved by a superposed two-cylinder structure, 
furthermore resonances frequencies have been reduced compared to the single structure and good performances 
have been obtained on the bandwidth. 

The proposed antenna can be used for SUH applications with a wide bandwidth (≈1 GHz) and provides good 
efficiency. 
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