
Network and Communication Technologies; Vol. 1, No. 2; 2012
ISSN 1927-064X E-ISSN 1927-0658

Published by Canadian Center of Science and Education

59

Timestamp Retransmission Algorithm for TCP-Cherry over
InterPlaNetary Internet

Satoshi Utsumi1 & Salahuddin Muhammad Salim Zabir2
1 Department of Control and Information System Engineering, Tsuruoka National College of Technology,
Yamagata, Japan
2 Orange Labs, France Telecom, Tokyo, Japan

Correspondence: Satoshi Utsumi, Department of Control and Information System Engineering, Tsuruoka
National College of Technology, Yamagata, Japan. Tel: 81-235-25-9077. E-mail: u-satoshi@tsuruoka-nct.ac.jp

Received: September 5, 2012 Accepted: October 26, 2012 Online Published: November 12, 2012

doi:10.5539/nct.v1n2p59 URL: http://dx.doi.org/10.5539/nct.v1n2p59

Abstract

InterPlaNetary (IPN) Internet links have extremely long propagation delays and very high link error rates. In
such networks, lost retransmissions of the TCP data segments are common. Existing TCP schemes can detect lost
retransmissions only through TCP retransmission timeout and hence are inefficient in such scenarios. In this
paper we propse a new algorithm for handling such lost retransmission efficiently for TCP-Cherry over IPN
Internet. Simulations show that our algorithm improves TCP-Cherry goodput by upto 13 times under high link
error.

Keywords: InterPlaNetary Internet, congestion control, TCP-Cherry, TCP timestamp option, TCP retransmission

1. Introduction

With the increase in space missions like human transport to the International Space Station, Mars explorers and
commercial space flights, the concept of InterPlaNetary (IPN) Internet has been becoming popular in recent
years. The IPN Internet refers to connecting more than one network each of which is separated from others by
stellar distance. Such a challenging networking environment is characterized by extremely long propagation
delay, low bandwidth and very high link error rates (Akan et al., 2004).

In such scenarios, long propagation delay and high link errors often lead to repeated congestion detection by
connection oriented protocols like TCP. Also, often the retransmitted segments get lost in the network. Several
mechanisms have been proposed to address issues related to the end to end connectivity over the IPN Internet.
An essential requirement for such schemes should be the ability to deploy over both the intra-planetary and the
inter-planetary networking scenarios.

With a view to addressing the above requirements, in this paper, we propose a new algorithm to deploy along
with TCP-Cherry (Utsumi et al., 2008; 2009). TCP Cherry is already known for its robustness compared with
other mechanisms over satellite networks with long propagation delays and high link errors. The new algorithm
ensures efficient handling of lost retransmissions under the harsh IPN conditions. As such, the performance of
TCP Cherry is optimized for intra-Planetary and inter-Planetary scenarios. Simulation results show that our
algorithm can improve the goodput yield of TCP-Cherry up to 13 times in high link error cases. Our algorithm
can also be deployed with TP-Planet (Akan et al., 2004), but performance gains are lower due to NIL segment
overheads.

The rest of the manuscript is organized as follows. In section 2, we discuss existing mechanisms that address end
to end connectivity for IPN Internet. We propose our timestamp retransmission algorithm in section 3. In section
4, we evaluate our proposed algorithm by simulation. Finally, we conclude the manuscript in section 5.

2. Related Works

SCPS-TP (Wang et al., 2007) is a transport protocol for space communications. It has the selective negative
acknowledgement (SNACK) option to detect lost segments. However, the SNACK option for SCPS-TP cannot
detect lost retransmissions.

LTP (Wang et al., 2011) is also for space communications. It detects lost segments with the “report segments” for

www.ccsenet.org/nct Network and Communication Technologies Vol. 1, No. 2; 2012

60

reliable parts of blocks (red parts). Report segments acknowledge selectively for data segments. Like
acknowledgement mechanisms for traditional TCPs, report segments for LTP cannot detect lost retransmissions.

As the algorithms to detect lost retransmissions, duplicate acknowledgement counting (DAC) (Kim & Lee,
2004) and SACK+ (Kim et al., 2004) have been proposed. The DAC algorithm detects lost retransmissions by
counting the number of duplicate acknowledgements. The SACK+ detects lost retransmissions by investigating
SACK blocks. As well as TCP-Peach (or TCP-Peach+), TCP-Cherry uses low-priority segments with data block
a lot. Then, DAC or SACK+ cannot apply to TCP-Cherry for detecting lost retransmissions deterministically,
because of indeterminate arriving acknowledgements (duplicate acknowledgements or SACKs) for the
low-priority segments. That is, the ACKs for the low-priority segments may lead to miss-counting the number of
duplicate acknowledgements at the DAC algorithm. The ACKs for the supplement segments of TCP-Cherry may
acknowledge unexpected data blocks for the SACK+ algorithm. For example, the ACKs for the supplement
segments transmitted before detecting the first lost of the data segment may acknowledge the data blocks which
sequence numbers are greater than the sequence number detecting the lost retransmission for SACK+.

3. Our Proposal

In the condition where the probability of segment loss due to link errors is large, duplicate segment losses, which
are losses of the segments retransmitted by TCP due to three duplicate acknowledgements (dupacks), occur
frequently. Conventional TCP can detect such duplicate segment losses only by TCP RTO (Retransmission
Timeout). The high error rate over IPN increases the probability of lost retransmissions of the TCP data segments
dramatically. Without special arrangements, a lost retransmission leads to TCP Retransmission Timeout (RTO)
which adversely affects TCP performance.

For IPN, RTO can be significantly high. Hence, waiting for RTO to occur leads to delay in recovering from the
loss. Despite the Fast-Forward Start algorithm in TCP-Cherry, this may lead to considerable inefficiencies. In
addition, for multiple lost retransmissions in a single window, the effect gets even worse. To overcome this
problem and thus recover multiple lost retransmissions in one window size during one RTT, we propose a new
retransmission algorithm for handling such losses. We name this as the Timestamp Retransmission algorithm
(Figure 1).

Our algorithm slightly modifies the mechanisms of original timestamp option in RFC 1323 (Jacobson et al,
1992) without changing its functionalities. In each dupack, the receiver echoes the Timestamp value (TSval)
corresponding to the segment for which the dupack (SACK) is generated. However, the sender ignores the
Timestamp echo reply (TSecr) field for RTT calculation purposes unless the acknowledgement advances the left
edge of the window (i.e., new segment is being acknowledged). This tricky modification ensures full functional
conformance to the provisions of RFC 1323.

To accomplish the above, the sender stores the sequence numbers and corresponding TSvals of the retransmitted
segments in a table called Timestamp Retransmission List.

Figure 1. Timestamp retransmission algorithm

3.1 Timestamp Retransmission Algorithm

We explain the algorithm of Figure 1 here. The parameters and functions used in the algorithm are described as
follows.

www.ccsenet.org/nct Network and Communication Technologies Vol. 1, No. 2; 2012

61

• a parameter TSval is the timestamp value for the next transmitted segment.

• a parameter TSecr is the timestamp echo of the received segment at that time.

• a function TimestampRetransmissionList(x) returns the TSval corresponding to the retransmitted data
segment of the sequence number x in the TimestampRetransmissionList.

• RemoveTimestampRetransmissionList(x), a function that removes the combinations of the sequence number
x and the corresponding TSvals.

• UpdateTimestampRetransmissionList(x, y), a function that updates the TSval for the sequence number x to
y.

• Retransmission(x), a function that retransmits the data segment corresponding to the sequence number x.
Upon receiving a SACK, TCP sender compares the TSvals of the (sequence numbers, TSvals of retransmitted
data segments) tuples in the Timestamp Retransmission List with the TSecr in the SACK.

• If all of the TSvals in Timestamp Retransmission List are larger than the TSecr in the SACK, the TCP
sender does nothing about Timestamp Retransmission List (Case 1).

• If some TSvals in Timestamp Retransmission List are smaller than TSecr in the SACK and the SACK
acknowledges the sequence numbers corresponding to the TSvals in the list, the TCP sender removes the
corresponding sequence numbers-TSvals entries (Case 2).

• If some TSvals in Timestamp Retransmission List are smaller than TSecr in the SACK and the SACK does
not acknowledge the sequence numbers corresponding to the TSvals in the list, the TCP sender retransmits the
data segment corresponding to the sequence number without waiting for timeout and updates the TSvals for the
sequence numbers in the table accordingly (Case 3).

During the first retransmission of the data segments, available bandwidth is estimated by corresponding
low-priority supplement segments and corresponding congestion control actions are taken by the TCP sender.
Hence, even in Case 3, the sender does not shrink the congestion window or transmit supplement segments. It
infers that the loss of the retransmitted segment is due to link errors rather than congestion.

3.2 Timestamp Retransmission Example Scenario

Figure 2 shows an example of how a timestamp retransmission occurs. In this figure, rather than representing
with real sequence number, we show a block of data using a single sequence number for easy understanding. Let
us assume that at time t0 (Figure 2) the sender transmits the data segment which will be lost in the network. We
assume maxcwnd=64.

• At time t=t0:

The sender transmits the data segment which will be lost in the network.

• At time t=t1 (where, t1≒ t0+RTT):

According to 3 dupacks (SACKs), the sender retransmits the data segments which was lost, and will be lost
again in the network. The sender restores the combination of the sequence number (1028) and TSval (10068) in
the retransmitted segment in Timestamp Retransmission List.

• At time t=t2(where, t2 t≒ 0+2×RTT):

Since the TSval (10068) for the retransmitted segment with the sequence number 1028 in the Timestamp
Retransmission List is smaller than the TSecr (10069) of the received SACK corresponding to the supplement
segment with the sequence number 1130, the sender retransmits again the data segment with the sequence
number 1028 without waiting for timeout.

In our proposal, TCP-Cherry sender needs the storage memory for Timestamp Retransmission List. Timestamp
Retransmission List stores the information for the retransmitted segment in current congestion window. Then,
Timestamp Retransmission List needs only the storage size S < O(W) = O(RTT). Here, W is the congestion
window size, which is linear for RTT. That is, the needed storage size is scalable for RTT.

www.ccsenet.org/nct Network and Communication Technologies Vol. 1, No. 2; 2012

62

1027

1027

1028
1029
1030

data segment
(normal priority segment)

supplement segment
(low priority segment)

data ACK
(normal priority segment)

supplement ACK
(low priority segment)

…

sender receiver
F

ir
st

-A
id

 R
ec

ov
er

y
C

on
g

es
ti

on

A
vo

id
an

ce

1031

…

retransmission data segment
(normal priority segment)1055

1056

1075
1076

1077

1028
1130
1131

1168

1080
1081

1098

1100

1101

1162
1163
1165

1168

1027(1029)
1027(1030)
1027(1031)

1027(1055)
1027(1056)

1027(1074)
1027(1075)
1027(1076)

1027(1077)

1027(1130)
1027(1131)

1104

…
…

1054

1027(1054)

…

…

…

…

…

…
…

……

…

…

…
…

F
as

t R
et

ra
ns

m
it

…

…

: Segment lost in the network

1079
1078

1099

1102
1103

1027(1078)
1027(1079)

1074

C
on

ge
st

io
n

 A
vo

id
an

ce

1169
1170

1028

1027(1080)
1027(1081)

1027(1098)
1027(1099)
1027(1100)

1027(1101)

1027(1103)
1027(1102)

1103

1104
1105
1106

T
im

es
ta

m
p

R

et
ra

ns
m

is
si

on

TSval SeqNo

AckNo TSecr

10000
10001
10002
10003
10004

10030
10031
10032

10060
10061
10062

10064

10066
10067

10068
10069
10070

10110

10112
10113

10140
10141
10142

10144

10147
10148

10150
10151
10152
10153

10180
10181
10182

10184

10187
10188

10000

10002
10003

10030
10031
10032

10060
10061
10062

10064

10066
10067

10069
10070

10112
10113

10140
10141
10142

10144

10147
10148

10150
10151

10004

Figure 2. Timestamp retransmission behavior

4. Performance Evaluation

As mentioned in section 1, our objective in this paper is to ensure highest performance from TCP-Cherry in both
intra-Planetary and inter-Planetary scenarios using our proposed novel algorithm. For performance evaluation,
we use the network simulator, ns-2. As such, we evaluate the performance of TCP-Cherry with Timestamp
Retransmission algorithm in deep space links of IPN Internet, through several experiments by varying packet
loss probability p. We assume the number of flow N = 1, the link capacity, c = 130 segments/s which is
approximately 1Mb/s for TCP segments of 1,000 bytes, the buffer size of the uplink, K = 100 segments, the
maximum congestion window size, maxcwnd = 76,800 segments, the buffer size of receiver, rwnd = 512,000
segments, RTT = 600 seconds, and Connection Duration = 10,000sec. We vary segment loss probability due to
link errors from 10-4 to 10-2 (/segment) (Akan et al., 2004). Table 1 shows the simulation configuration. Figure 3
and Figure 4 are results from simulations. The definitions of goodput and overhead are the same as (Utsumi et al.,
2008). Simulation results show that our proposed algorithm elevates TCP-Cherry performance over IPN
significantly (upto 13 times in goodput) particularly under the situation when the link error p = 0.01 (/segment).

www.ccsenet.org/nct Network and Communication Technologies Vol. 1, No. 2; 2012

63

Table 1. Simulation configuration 1

Number of Flows 1

Capacity for Deep space link 1 Mbps

RTT of Deep space link 600 sec

Drop rate (random) for Deep space link 10-4 – 10-2 /packets (varied)

Buffer size for Deep space link 100 packets

Maximum congestion window size 76,800 packets

Buffer size for Receiver 512,000 packets

Segment size 1,000 bytes

IP Version 4

Simulation duration 10,000 sec

Next, we evaluate the performance of TCP-Cherry with Timestamp Retransmission algorithm in deep space links
of IPN Internet with congestion, through several experiments by varying packet loss probability p. We assume
the number of flows, N = 10, the link capacity, c = 130 segments/s which is approximately 1Mb/s for TCP
segments of 1,000 bytes, the buffer size of the uplink, K = 100 segments, the maximum congestion window size,
maxcwnd = 7,680 segments, the buffer size of receiver, rwnd = 512,000 segments, RTT = 600 seconds, and
Connection Duration = 10,000sec. We vary segment loss probability due to link errors from 10-4 to 10-2. Table 2
shows the simulation configuration. Figure 5, Figure 6 and Figure 7 are results from simulations.

Table 2. Simulation configuration 2

Number of Flows 10

Capacity for Deep space link 1 Mbps

RTT of Deep space link 600 sec

Drop rate (random) for Deep space link 10-4 – 10-2 /packets (varied)

Buffer size for Deep space link 100 packets

Maximum congestion window size 76,800 packets

Buffer size for Receiver 512,000 packets

Segment size 1,000 bytes

IP Version 4

Simulation duration 10,000 sec

The definitions of goodput, fairness and overhead are as follows (Utsumi et al., 2008),

DurationConnection

edDataAcknowledgmulativelyAmountOfCu
Goodput =

where AmountOfCumulativelyAcknowledgedData is the number of bytes acknowledged at senders (i.e.,
excluding retransmitted data and SACKed data).

(%)×
Re

Re
= 100

ceivedDatalAmountOfAl

ceivedDataplicateAmountOfDu
Overhead

where AmountOfDuplicateReceivedData is the number of bytes of duplicate data received (i.e., segments with
the same sequence number received more then once) by receivers and AmountOfAllReceivedData is the number
of bytes of all data received by receivers.

∑

∑

=

=
= m

1i

2
i

2m

1i
i

xm

x

Fairness

www.ccsenet.org/nct Network and Communication Technologies Vol. 1, No. 2; 2012

64

where m connections with same connection durations share the link capacity, and xi is the goodput of connection
i.

Figure 3. Our algorithm improves goodput significantly at high error rates

Figure 4. Our algorithm reduces overhead significantly at high error rates

Figure 5. Goodput with 10 flows

Figure 6. Overhead with 10 flows

www.ccsenet.org/nct Network and Communication Technologies Vol. 1, No. 2; 2012

65

Figure 7. Fairness with 10 flows

Since retransmission algorithms for SCPS-TP and LTP cannot detect lost retransmissions, their performance
applied to TCP-Cherry over IPN Internet may be similar to TCP-Cherry without Timestamp Retransmission
algorithm, that is, only with the normal fast retransmit algorithm.

5. Conclusion

In this paper we propose a new algorithm, named Timestamp Retransmission Algorithm, for deployment along
with TCP-Cherry to handle lost retransmissions over IPN Internet efficiently. Simulation results show that our
proposed algorithm elevates TCP-Cherry performance over IPN significantly (upto 13 times in goodput)
particularly under high link error.

References

Akan, O. B., Fang, J., & Akyildiz, I. F. (2004). TP-Planet: A Reliable Transport Protocol for InterPlaNetary.

Akan, O. B. (2004). TP-planet: a reliable transport protocol for interplanetary Internet. IEEE Journal on Selected
Areas in Communications, 22(2), 348-361. http://dx.doi.org/10.1109/JSAC.2003.819985

Jacobson, V., Barden, R., & Borman, D. (1992). TCP Extensions for High Performance. RFC 1323.

Kim, B., Kim, D., & Lee, J. (2004). Lost retransmission detection for TCP SACK. IEEE Commun. Lett., 8,
600-6002. http://dx.doi.org/10.1109/LCOMM.2004.835326

Kim, B., & Lee, J. (2004). Retransmission loss recovery by duplicate acknowledgement counting. IEEE
Commun. Lett., 8, 88-90. http://dx.doi.org/10.1109/LCOMM.2003.822525

Utsumi, S., Zabir, S. M. S., & Shiratori, N. (2008). TCP-Cherry: A new approach for TCP congestion control
over satellite IP networks. Computer Communications, 31, 2541-2561.

Utsumi, S., Zabir, S. M. S., & Shiratori, N. (2009). TCP-Cherry for satellite IP networks: analytical model and
performance evaluation. Computer Communications, 32, 1377-1383.

Wang, R., Aryasomayajula, N. C., Ayyagari, A., & Zhang, Q. (2007). An Experimental Performance Evaluation
of SCPS-TP over Cislunar Communications Links. Proc. of IEEE Wireless Communications and
Networking Conference (WCNC), 2603-2607.

Wang, R., Burleigh, S. C., Parikh, P., Lin, C. J., & Sun, B. (2011). Licklider Transmission Protocol (LTP)-Based
DTN for Cislunar Communications. IEEE/ACM Transactions on Networking, 19, 359-368.
http://dx.doi.org/10.1109/TNET.2010.2060733

