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Abstract 

InterPlaNetary (IPN) Internet links have extremely long propagation delays and very high link error rates. In 
such networks, lost retransmissions of the TCP data segments are common. Existing TCP schemes can detect lost 
retransmissions only through TCP retransmission timeout and hence are inefficient in such scenarios. In this 
paper we propse a new algorithm for handling such lost retransmission efficiently for TCP-Cherry over IPN 
Internet. Simulations show that our algorithm improves TCP-Cherry goodput by upto 13 times under high link 
error. 
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1. Introduction 

With the increase in space missions like human transport to the International Space Station, Mars explorers and 
commercial space flights, the concept of InterPlaNetary (IPN) Internet has been becoming popular in recent 
years. The IPN Internet refers to connecting more than one network each of which is separated from others by 
stellar distance. Such a challenging networking environment is characterized by extremely long propagation 
delay, low bandwidth and very high link error rates (Akan et al., 2004).  

In such scenarios, long propagation delay and high link errors often lead to repeated congestion detection by 
connection oriented protocols like TCP. Also, often the retransmitted segments get lost in the network. Several 
mechanisms have been proposed to address issues related to the end to end connectivity over the IPN Internet. 
An essential requirement for such schemes should be the ability to deploy over both the intra-planetary and the 
inter-planetary networking scenarios. 

With a view to addressing the above requirements, in this paper, we propose a new algorithm to deploy along 
with TCP-Cherry (Utsumi et al., 2008; 2009). TCP Cherry is already known for its robustness compared with 
other mechanisms over satellite networks with long propagation delays and high link errors. The new algorithm 
ensures efficient handling of lost retransmissions under the harsh IPN conditions. As such, the performance of 
TCP Cherry is optimized for intra-Planetary and inter-Planetary scenarios. Simulation results show that our 
algorithm can improve the goodput yield of TCP-Cherry up to 13 times in high link error cases. Our algorithm 
can also be deployed with TP-Planet (Akan et al., 2004), but performance gains are lower due to NIL segment 
overheads. 

The rest of the manuscript is organized as follows. In section 2, we discuss existing mechanisms that address end 
to end connectivity for IPN Internet. We propose our timestamp retransmission algorithm in section 3. In section 
4, we evaluate our proposed algorithm by simulation. Finally, we conclude the manuscript in section 5.  

2. Related Works 

SCPS-TP (Wang et al., 2007) is a transport protocol for space communications. It has the selective negative 
acknowledgement (SNACK) option to detect lost segments. However, the SNACK option for SCPS-TP cannot 
detect lost retransmissions. 

LTP (Wang et al., 2011) is also for space communications. It detects lost segments with the “report segments” for 
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reliable parts of blocks (red parts). Report segments acknowledge selectively for data segments. Like 
acknowledgement mechanisms for traditional TCPs, report segments for LTP cannot detect lost retransmissions. 

As the algorithms to detect lost retransmissions, duplicate acknowledgement counting (DAC) (Kim & Lee, 
2004) and SACK+ (Kim et al., 2004) have been proposed. The DAC algorithm detects lost retransmissions by 
counting the number of duplicate acknowledgements. The SACK+ detects lost retransmissions by investigating 
SACK blocks. As well as TCP-Peach (or TCP-Peach+), TCP-Cherry uses low-priority segments with data block 
a lot. Then, DAC or SACK+ cannot apply to TCP-Cherry for detecting lost retransmissions deterministically, 
because of indeterminate arriving acknowledgements (duplicate acknowledgements or SACKs) for the 
low-priority segments. That is, the ACKs for the low-priority segments may lead to miss-counting the number of 
duplicate acknowledgements at the DAC algorithm. The ACKs for the supplement segments of TCP-Cherry may 
acknowledge unexpected data blocks for the SACK+ algorithm. For example, the ACKs for the supplement 
segments transmitted before detecting the first lost of the data segment may acknowledge the data blocks which 
sequence numbers are greater than the sequence number detecting the lost retransmission for SACK+. 

3. Our Proposal 

In the condition where the probability of segment loss due to link errors is large, duplicate segment losses, which 
are losses of the segments retransmitted by TCP due to three duplicate acknowledgements (dupacks), occur 
frequently. Conventional TCP can detect such duplicate segment losses only by TCP RTO (Retransmission 
Timeout). The high error rate over IPN increases the probability of lost retransmissions of the TCP data segments 
dramatically. Without special arrangements, a lost retransmission leads to TCP Retransmission Timeout (RTO) 
which adversely affects TCP performance. 

For IPN, RTO can be significantly high. Hence, waiting for RTO to occur leads to delay in recovering from the 
loss. Despite the Fast-Forward Start algorithm in TCP-Cherry, this may lead to considerable inefficiencies. In 
addition, for multiple lost retransmissions in a single window, the effect gets even worse. To overcome this 
problem and thus recover multiple lost retransmissions in one window size during one RTT, we propose a new 
retransmission algorithm for handling such losses. We name this as the Timestamp Retransmission algorithm 
(Figure 1). 

Our algorithm slightly modifies the mechanisms of original timestamp option in RFC 1323 (Jacobson et al, 
1992) without changing its functionalities. In each dupack, the receiver echoes the Timestamp value (TSval) 
corresponding to the segment for which the dupack (SACK) is generated. However, the sender ignores the 
Timestamp echo reply (TSecr) field for RTT calculation purposes unless the acknowledgement advances the left 
edge of the window (i.e., new segment is being acknowledged). This tricky modification ensures full functional 
conformance to the provisions of RFC 1323. 

To accomplish the above, the sender stores the sequence numbers and corresponding TSvals of the retransmitted 
segments in a table called Timestamp Retransmission List. 

 

 
Figure 1. Timestamp retransmission algorithm 

 
3.1 Timestamp Retransmission Algorithm 

We explain the algorithm of Figure 1 here. The parameters and functions used in the algorithm are described as 
follows. 
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• a parameter TSval is the timestamp value for the next transmitted segment. 

• a parameter TSecr is the timestamp echo of the received segment at that time. 

• a function TimestampRetransmissionList(x) returns the TSval corresponding to the retransmitted data 
segment of the sequence number x in the TimestampRetransmissionList.  

• RemoveTimestampRetransmissionList(x), a function that removes the combinations of the sequence number 
x and the corresponding TSvals. 

• UpdateTimestampRetransmissionList(x, y), a function that updates the TSval for the sequence number x to 
y. 

• Retransmission(x), a function that retransmits the data segment corresponding to the sequence number x. 
Upon receiving a SACK, TCP sender compares the TSvals of the (sequence numbers, TSvals of retransmitted 
data segments) tuples in the Timestamp Retransmission List with the TSecr in the SACK. 

• If all of the TSvals in Timestamp Retransmission List are larger than the TSecr in the SACK, the TCP 
sender does nothing about Timestamp Retransmission List (Case 1).  

• If some TSvals in Timestamp Retransmission List are smaller than TSecr in the SACK and the SACK 
acknowledges the sequence numbers corresponding to the TSvals in the list, the TCP sender removes the 
corresponding sequence numbers-TSvals entries (Case 2). 

• If some TSvals in Timestamp Retransmission List are smaller than TSecr in the SACK and the SACK does 
not acknowledge the sequence numbers corresponding to the TSvals in the list, the TCP sender retransmits the 
data segment corresponding to the sequence number without waiting for timeout and updates the TSvals for the 
sequence numbers in the table accordingly (Case 3). 

During the first retransmission of the data segments, available bandwidth is estimated by corresponding 
low-priority supplement segments and corresponding congestion control actions are taken by the TCP sender. 
Hence, even in Case 3, the sender does not shrink the congestion window or transmit supplement segments. It 
infers that the loss of the retransmitted segment is due to link errors rather than congestion. 

3.2 Timestamp Retransmission Example Scenario 

Figure 2 shows an example of how a timestamp retransmission occurs. In this figure, rather than representing 
with real sequence number, we show a block of data using a single sequence number for easy understanding. Let 
us assume that at time t0 (Figure 2) the sender transmits the data segment which will be lost in the network. We 
assume maxcwnd=64. 

• At time t=t0: 

The sender transmits the data segment which will be lost in the network. 

• At time t=t1 (where, t1≒ t0+RTT): 

According to 3 dupacks (SACKs), the sender retransmits the data segments which was lost, and will be lost 
again in the network. The sender restores the combination of the sequence number (1028) and TSval (10068) in 
the retransmitted segment in Timestamp Retransmission List. 

• At time t=t2(where, t2  t≒ 0+2×RTT): 

Since the TSval (10068) for the retransmitted segment with the sequence number 1028 in the Timestamp 
Retransmission List is smaller than the TSecr (10069) of the received SACK corresponding to the supplement 
segment with the sequence number 1130, the sender retransmits again the data segment with the sequence 
number 1028 without waiting for timeout. 

In our proposal, TCP-Cherry sender needs the storage memory for Timestamp Retransmission List. Timestamp 
Retransmission List stores the information for the retransmitted segment in current congestion window. Then, 
Timestamp Retransmission List needs only the storage size S < O(W) = O(RTT). Here, W is the congestion 
window size, which is linear for RTT. That is, the needed storage size is scalable for RTT. 
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Figure 2. Timestamp retransmission behavior 

 

4. Performance Evaluation 

As mentioned in section 1, our objective in this paper is to ensure highest performance from TCP-Cherry in both 
intra-Planetary and inter-Planetary scenarios using our proposed novel algorithm. For performance evaluation, 
we use the network simulator, ns-2. As such, we evaluate the performance of TCP-Cherry with Timestamp 
Retransmission algorithm in deep space links of IPN Internet, through several experiments by varying packet 
loss probability p. We assume the number of flow N = 1, the link capacity, c = 130 segments/s which is 
approximately 1Mb/s for TCP segments of 1,000 bytes, the buffer size of the uplink, K = 100 segments, the 
maximum congestion window size, maxcwnd = 76,800 segments, the buffer size of receiver, rwnd = 512,000 
segments, RTT = 600 seconds, and Connection Duration = 10,000sec. We vary segment loss probability due to 
link errors from 10-4 to 10-2 (/segment) (Akan et al., 2004). Table 1 shows the simulation configuration. Figure 3 
and Figure 4 are results from simulations. The definitions of goodput and overhead are the same as (Utsumi et al., 
2008). Simulation results show that our proposed algorithm elevates TCP-Cherry performance over IPN 
significantly (upto 13 times in goodput) particularly under the situation when the link error p = 0.01 (/segment). 
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Table 1. Simulation configuration 1 

Number of Flows 1  

Capacity for Deep space link 1 Mbps 

RTT of Deep space link 600 sec 

Drop rate (random) for Deep space link 10-4 – 10-2 /packets (varied) 

Buffer size for Deep space link 100 packets 

Maximum congestion window size 76,800 packets 

Buffer size for Receiver 512,000 packets 

Segment size 1,000 bytes 

IP Version 4 

Simulation duration 10,000 sec 

 

Next, we evaluate the performance of TCP-Cherry with Timestamp Retransmission algorithm in deep space links 
of IPN Internet with congestion, through several experiments by varying packet loss probability p. We assume 
the number of flows, N = 10, the link capacity, c = 130 segments/s which is approximately 1Mb/s for TCP 
segments of 1,000 bytes, the buffer size of the uplink, K = 100 segments, the maximum congestion window size, 
maxcwnd = 7,680 segments, the buffer size of receiver, rwnd = 512,000 segments, RTT = 600 seconds, and 
Connection Duration = 10,000sec. We vary segment loss probability due to link errors from 10-4 to 10-2. Table 2 
shows the simulation configuration. Figure 5, Figure 6 and Figure 7 are results from simulations.  

 

Table 2. Simulation configuration 2 

Number of Flows 10 

Capacity for Deep space link 1 Mbps 

RTT of Deep space link 600 sec 

Drop rate (random) for Deep space link 10-4 – 10-2 /packets (varied) 

Buffer size for Deep space link 100 packets 

Maximum congestion window size 76,800 packets 

Buffer size for Receiver 512,000 packets 

Segment size 1,000 bytes 

IP Version 4 

Simulation duration 10,000 sec 

 

The definitions of goodput, fairness and overhead are as follows (Utsumi et al., 2008), 

DurationConnection
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where m connections with same connection durations share the link capacity, and xi is the goodput of connection 
i. 

 

 
Figure 3. Our algorithm improves goodput significantly at high error rates 

 

 
Figure 4. Our algorithm reduces overhead significantly at high error rates 

 

 
Figure 5. Goodput with 10 flows 

 

 
Figure 6. Overhead with 10 flows 
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Figure 7. Fairness with 10 flows 

 

Since retransmission algorithms for SCPS-TP and LTP cannot detect lost retransmissions, their performance 
applied to TCP-Cherry over IPN Internet may be similar to TCP-Cherry without Timestamp Retransmission 
algorithm, that is, only with the normal fast retransmit algorithm. 

5. Conclusion 

In this paper we propose a new algorithm, named Timestamp Retransmission Algorithm, for deployment along 
with TCP-Cherry to handle lost retransmissions over IPN Internet efficiently. Simulation results show that our 
proposed algorithm elevates TCP-Cherry performance over IPN significantly (upto 13 times in goodput) 
particularly under high link error. 
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