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Abstract 
Most recently, an experiment was published that cannot be described by the Shannon formula. We will give the 
details to the reader to check the deviation between the Shannon formula and the experiment. Then we derive a 
modification of the formula. Consequences of the modification is extended generality, and clear bounds for the 
average rate of reliable information transfer on a noisy channel of finite bandwidth.  
Keywords: Digital communications, noise, Shannon formula 
1. Introduction 
It is a crucial problem in theory of communications if the average speed of information transfer over a noisy 
channel of finite bandwidth is bounded. That was a seminal result by Shannon (Shannon, 1948) 72 years ago. It is 
high time, however, to take this result under a magnifying glass, while all kinds of appreciations are given. The 
long-elapsed time since its discovery proves that the result is robust, it is not easy to find anything to refine. 
This almost impossible task is the goal of our paper. Our motivation is to explain the deviation between the 
Shannon formula and our Matlab/Simulink experiment with a noise insensitive circuit (Ladvánszky, 2020). 
2. Problem Statement 
In this Section an experiment is described that cannot be characterized by the Shannon formula. 
Let us start with the Shannon formula (Shannon, 1948). C = W*logଶ ቀ1 + ୗ୒ቁ                                    (1) 

where 𝐶 is said to be channel capacity, 𝑊 is the so-called channel bandwidth, 𝑆 and 𝑁 are signal and noise 
average power. 

In our Matlab/Simulink experiment (Ladvánszky, 2020), a noisy 4QAM signal is recovered by a modified Costas 

loop. 𝑊 = 4 MHz, ௌே = −13 dB, and the 2 MS/s signal is recovered at SER < 0.001 (symbol error rate). 

Substituting these data into (1), the result is 𝐶 ≈ 282 kS/s, and that roughly deviates from the speed of the 
recovered signal. As a conclusion, the Shannon formula is not valid for this case. 

3. A Possible Solution: a New Formula 
In this Section, we gather some facts in connection with the Shannon formula. After some criticism, a new formula 
is derived that can characterize the experimental fact mentioned in the previous Section. 
We start with the classical model of communications, (Shannon, 1948), Figure 1: 
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Figure 1. Schematic diagram of a general communication system (Shannon, 1948) 

 
At the center of Figure 1, the small square is the channel. In this paper, we define the channel as a broad-band 
system block that represents propagation of electromagnetic waves from the transmitter to the receiver. Examples 
for channel in this sense is a piece of coaxial cable or optical fiber. 
The channel in Figure 1 does not contain any filters. Filters are parts of the transmitter and the receiver. 
We have three bandwidths in consideration. 𝑊 is the channel bandwidth, we mean the bandwidth of the channel 
defined above. In case of coaxial cables, its value is some hundreds of MHz or in the GHz range. 𝐵ௌ is the signal bandwidth. It is determined by the transmitted signal in the baseband. Its meaning is clarified in 
Figure 2, its value is 4 MHz in our experiment. 
 

 
Figure 2. Definition of signal bandwidth on the spectrum of the transmitted baseband signal before transmitter 

mixer. 
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𝑩𝑺 = 𝟒 MHz, 𝑩𝑵 is the noise bandwidth, Figure 3. In our experiment, it is 200 MHz. 
 

 
Figure 3. Definition of noise bandwidth on the spectrum of the receiver input signal. 𝑩𝑵 = 200 MHz 

 
Equation (1) is valid for the case when signal and noise bandwidths are identical (Shannon, 1948). 
Our first objection is that 𝐶 is not a characteristic of the channel alone. For example, 𝑆 is signal power, a 
characteristic of the transmitter and not the channel, and 𝑊 is also questionable. We call here 𝐶 as upper bound 
of average speed of information transfer, it is a characteristic of the whole communication system consisting of a 
transmitter, a channel, and a receiver. 
Original explanation for 𝐶 is (Shannon, 1948), Theorem 12; (Shannon, 1949), (1). C = lim୘→ஶ ୪୭୥మ ୑୘                                       (2) 

where logଶ 𝑀 is the maximum number of correctly transferred bits. Averaging time is exceptionally long. Name 
of upper bound for average bitrate is correct. 
In (Shannon, 1948), signal bandwidth 𝐵ௌ  and noise bandwidth 𝐵ே  are identical and it is called as channel 
bandwidth 𝑊: Bୗ = B୒ = W                                        (3) 

where spectra are defined as follows: 𝑆(𝑓) = ฬ𝑃𝐷𝑆 𝑖𝑓 0 ≤ 𝑓 ≤ 𝐵ௌ0 𝑖𝑓 𝑓 > 𝐵ௌ                                 (4) 

𝑁(𝑓) = ฬ𝑃𝐷𝑁 𝑖𝑓 0 ≤ 𝑓 ≤ 𝐵ே0 𝑖𝑓 𝑓 > 𝐵ே                               (5) 

where 𝑃𝐷𝑆 and 𝑃𝐷𝑁 are power densities, assumed frequency independent. 
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In the original papers (Shannon, 1948, 1949), the following assumption is hold: 𝐵ௌ = 𝐵ே                                           (6) 

However, in the model of Figure 1, in general, 𝐵ௌ ≠ 𝐵ே                                           (7) 

As 𝐵ௌ > 𝐵ே is not reasonable, 𝐵ௌ ≤ 𝐵ே. Signal to noise ratio is: 𝑆𝑁𝑅 = ௌே                                           (8) 

Combining (4, 5, 6, 8) 𝑆𝑁𝑅 = ௉஽ௌ௉஽ே                                           (9) 

In general, 𝑆𝑁𝑅 = ௉஽ௌ∗஻ೄ௉஽ே∗஻ಿ                                        (10) 

If (7) holds, then  𝐶 ≠ 𝐵ௌ ∗ 𝑙𝑜𝑔ଶ ቀ1 + ௌேቁ                                     (11) 

We introduce a new quantity 𝐶ᇱ That is the formal extension of (1) for the case of non-identical bandwidths: 𝐶ᇱ = 𝐵ௌ ∗ 𝑙𝑜𝑔ଶ ቀ1 + ௌேቁ                                      (1a) 

In order to extend (1) for the case of non-identical bandwidths (7), let us start from the Shannon formula for 
colored noise (Shannon, 1949), Equation (32): 𝐶ଵ = ׬ 𝑙𝑜𝑔ଶ ቀ1 + ௌ(௙)ே(௙)ቁ 𝑑𝑓஻ೄ଴                                  (12) 

By combining (4, 5, 12), we obtain 𝐶ଵ = 𝐵ௌ ∗ 𝑙𝑜𝑔ଶ ቀ1 + ௉஽ௌ௉஽ேቁ                                   (13) 

It is exploited that PDS and PDN do not depend on f. (13) is valid for the case of non-identical bandwidths (7), 
while (1) is not valid. 
If 𝐵ே > 𝐵ௌ, then 𝐶ଵ > 𝐶ᇱ, as we realized it in a Matlab/Simulink experiment with our version of the modified 
Costas loop (Ladvánszky, 2020). 
So, 𝐶ଵ > 𝐶ᇱ. 𝐶ᇱ is the formal extension of the Shannon formula, 𝐶ଵ is our formula. Can we say now if the 
Shannon formula is exceeded? Author’s opinion is yes if also a physical circuit realization is produced. The circuit 
should operate with low symbol error rate at a SNR negative in dB. This experiment is coming soon. 
4. Consequences: Bounds for the Average Speed of Communications 
Lower bound for operation of the circuit is: ௉஽ௌ௉஽ே ≥ 1                                            (14) 

From (12) and (14): 𝐶ଵ ≥ 𝐵ௌ                                           (15) 

Average speed of information transfer is bounded from below by the signal bandwidth. That is natural and obvious. 
Considering (12) for fixed 𝐵ௌ and 𝑃𝐷𝑆, we see that 𝐶ଵ is bounded from above by the smallest possible 𝑃𝐷𝑁 
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only. That is the cosmic background radiation (Bucher, 2015) or the thermal noise (Kerr & Randa, 2010), which is 
greater. At the moment, we can see another limiting factor. 
Carrier frequency 𝑓௖. In order to be able to reconstruct the carrier, 𝐶ଵ < 𝑓௖                                            (16) 

This is because the lower edge of the lower sideband around 𝑓௖, should be at a positive frequency. 
In our 4QAM experiment, actual transfer speed is 2 MS/s and the carrier frequency is 10 MHz. 
Now we substitute (16) back into (13): 𝑚𝑎𝑥 ቀ௉஽ௌ௉஽ேቁ = 2೑೎ಳೄ − 1                                        (17) 

Meaning of (17) is that a ௉஽ௌ௉஽ே value greater than that in (17), cannot be exploited for further increasing the bitrate. 

For control, we read the power density values from Figure 3. 𝑃𝐷𝑆 = −52 dBm/Hz, 𝑃𝐷𝑁 = −72 dBm/Hz, and 

we also know that 𝐵ௌ = 4 MHz, 𝑓௖ = 10 MHz. Then in (17), ௉஽ௌ௉஽ே = 100 and 2೑೎ಳೄ − 1 ≈ 4.66 so in this case 𝑓௖ 

limits the maximum bitrate that can be achieved with increasing 𝑃𝐷𝑆. 

We can calculate how much it is. Substituting these values in (13), 𝐶ଵ ≈ 26.6 Mb/s, and due to the limitation by 𝑓௖, 𝐶ଵ = 10 Mb/s could be achieved in ideal case. 
5. Conclusions 
We discussed some concepts in connection with the Shannon formula. We derived a modification of the original 
formula and concluded that speed of communications can be higher than that we believed. 
If the reader checks the keyword “digital communications pdf” in an internet browser, then it gives more than 20 
choices (Proakis & Salehi, 2015). Most of them consider 𝑊 as channel bandwidth and make signal and noise 
bandwidths identical. So, our present discussion is timely. 
Our derivation is valid if the channel signal is real. The relations are easy to extend for the case of complex signals, 
however. 
It can be clearly recognized that the whole thing depends on the definition of bandwidths. Author’s experience is 
that the typical misunderstanding is as follows. The channel bandwidth is limited to the signal bandwidth and thus 
a part of the noise spectrum is neglected in calculation of SNR. This error occurs if one considers the receiver filter 
as part of the channel. 
We call the attention of the reader to a fine moment in derivation of (13). The same equation can also be achieved 
when we substitute equal bandwidths (6) in (1a). But what we do is different. We consider different bandwidths (7) 
and the result in (13) is the consequence of the fact that the upper limit of integration is lower than 𝐵ே in (12). 
We are aware, by comparison of Figure 2 and Equation (4), that Equation (4) is an approximation. However, 
considering the exact value of S(f) is straightforward. 
The author is also available on ResearchGate, LinkedIn and Facebook. 
Acknowledgements 
The author is grateful to Dr. I. Schmideg who called his attention to check the Shannon formula. Dr. E. Simonyi 
is also acknowledged for the constant encouragement as the advisor of the DSc work of the author. The 
Hungarian team representing the medicine NORMALIFE is acknowledged for their significant improvement to 
the health of the author. 
References 
Bucher, M. (2015) Physics of the cosmic microwave background anisotropy. International Journal of Modern 

Physics D, arXiv:1501.04288v1 [astro-ph.CO] (Januay 18th, 2015).  
Kerr, A. R., & Randa, J. (2010). Thermal Noise and Noise Measurements- A 2010 Update. IEEE Microwave 

Magazine, 11(6). https://doi.org/10.1109/MMM.2010.937732 
Ladvánszky, J. (2020). Noise reduction for digital communications - The Masterpiece, a modified Costas loop. 

Circuits and Systems, 11(6), 57-64. https://doi.org/10.4236/cs.2020.116006 



nct.ccsenet.org Network and Communication Technologies Vol. 5, No. 2; 2020 

6 

 

Proakis, J. G., & Salehi, M. (2015). Digital Communications (5th ed.). McGraw-Hill, 2008. 
Shannon, C. E. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal, 27(3), 

379-656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x 
Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE, 137, 10-21. 

https://doi.org/10.1109/JRPROC.1949.232969 
 
Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/4.0/). 
 


