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Abstract

The problem is considered on mixed convection flow due to the effect of small amplitude oscillations of a viscous
incompressible fluid along a horizontal circular cylinder. Direct implicit finite-difference scheme is employed to
solve the dimensionless system of partial differential equations. In case of steady flow, the solutions are presented
as functions of the curvature parameter X on the entire surface of the cylinder and there is a visual comparison with
the existing result. For fluctuating flow, considering Prandtl number, Pr=1.0, the results are shown graphically in
terms of amplitude and phase of the Nusselt number for different values of buoyancy parameter λ. Due to the effect
of λ and frequency parameter ω, streamlines and isotherms as well as transient shear stress and heat transfer are
illustrated in the interplay of study.
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1. Introduction

Combined effect of forced and free convection flows are arising in many applications of real life problems. Some
instantaneous examples are as follows:

• electronic devices cooled by fans;

• nuclear reactors cooled during emergency shutdown;

• solar central receivers expand to wind current and;

• heat exchangers placed in a low-velocity environment.

These flows are characterized by the buoyancy parameter λ = Gr/Ren, a rational of Grashof and Reynolds number
with a positive constant n. The parameter λ depends on the flow structure and the heating conditions of the surface,
as well as provides the influence of forced convection in comparison with that of free convection. The mixed
convection pattern is generally defined by the range λ ∈ [λl, λu] , where λl and λu are the lower and the upper
bounds of the regime of mixed convection flow, respectively. Outside the mixed convection reign, λ < [λl, λu], the
flow is either the pure free convection (λ < λl) or the pure forced convection (λ > λu).

In the presence of a boundary layer, the theoretical analysis on mixed convection flow around solid bodies was
investigated by Acrivos (1966) for values of the local Nusselt number in the limit of the Prandtl number Pr→
0 or Pr→ ∞. Merkin (1977) considered that the stream is flowing in the upward direction; the flow regime
was discussed with respect to the dimensionless parameter λ ( with n = 2), say the Richardson number α =
gβ∆Ta/U2

0 = Gr/Re2, where U0 is the free stream velocity. The solutions were obtained for both small and large
α, where forced convection effects dominate for small α while free convection for large α. On a horizontal circular
cylinder, a mixed convection boundary layer problem was considered by Hossain, Kutubuddin and Pop (1999).
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They studied the effect of radiation-conduction interaction when the temperature is constant. Considering variable
surface temperature, Aldoss, Ali, and Al-Nimr (1996) investigated the effect of radial magnetic field on the flow
of mixed convection from a horizontal circular cylinder. The results were presented using numerical methods of
local non-similarity as well as the coordinate perturbation. Merkin (1967) considered the case of natural convection
flow from a circular cylinder in viscous fluid to present a solution to this problem for Newtonian fluid using series
expansion. A free convection flow from a horizontal cylinder and axi-symmetric bodies of arbitrary contours was
investigated by Lin and Chao (1974).

The lineraziation method was considered for the unsteady forced flow system past a circular cylinder with small
oscillating amplitude by Lighthill (1954). A similar problem of axi-symmetric body for a long circular cylinder
was analyzed in Glauert and Lighthill (1995). Gorla (1979) examined a harmonic motion of stagnation flow on a
circular cylinder in case of time dependent fluid dynamics. The solutions were presented for low and high values
of the contracted frequency. Hossain, Hussain, and Rees (2001) investigated the buoyancy force in the unsteady
free convection flow through a vertical surface. In the presence of the magnetic field, a fluctuating problem with
electrically conducting fluid was analyzed along a vertical plate by Hossain, Das, and Pop (1998). Ramachandran,
Chen, and Armaly (1988) analyzed the combined (free and forced) flow in 2D contiguous to a vertical surface for
arbitrary wall temperature and surface heat flux variations and obtained the similarity solutions. Continuing the
identical flow as before at a 2D stagnation point on a horizontal boundary was smeared by Amin and Riley (1995).
The studies in this section dealt with the steady flows, but for practical interest there are many unsteady flow
problems. The unsteadiness is due to the change in the free stream velocity and/or wall temperature/heat flux or
both. Seshadri, Sreeshylan, and Nath (2002) considered the unsteady mixed convection flow in the stagnation point
dangling to a vertical flat plate. The boundary layer equations were solved by using an implicit finite-difference
method starting from the initial steady state to the final steady state. Recently, Hossain, Kamrujjaman, and Gorla
(2009) dealt with the problems encountered in the viscous incompressible fluid flow field at the free convection
flow along a long horizontal cylinder when the temperature of the body is oscillating.

Motivated by the previous work of Acrivos (1966), the present study is exploring the problem defined in Merkin
(1977), Hossain et al. (1999) in order to investigate the impact of an oscillating flow. The goal of this paper
is to comprehend the influence of oscillating surface temperature on combined flow over a horizontal circular
cylinder exposed to a vertical external flow. The nonlinear system of partial differential equations is governing the
mixed convection steady mean flow and oscillating flow. The presented model is solved numerically by introducing
the finite difference primitive variable transformation method. The stationary solutions for the shear stresses and
heat transfer are compared with that of Merkin (1977) and Hossain et al. (1999). For fluctuating flow, the results
are shown using the terms amplitude-phase and heat transfer for values of X in [0, π] radian, where X is the
measurement of curvature. The flow patterns in terms of streamlines and isotherms as well as transient shear stress
and heat transfer has been shown graphically with effect of the frequency of oscillation, ω, amplitude of oscillation,
ε, different values of the mixed convection parameter λ while the Prandtl number is unique.

2. Mathematical Formalism

Let us consider the problem of a two-dimensional unsteady mixed convection boundary layer flow past a circular
cylinder for viscous incompressible fluids. The physical structure and the coordinate system for this flow are
displayed in Figure 1. We assume that the undisturbed free stream velocity (1/2)U∞ is directed vertically upward,
and is across the horizontal cylinder, where the flow in the outer region of the boundary approaches to U∞ sin(x/R).
The surface temperature of the cylinder oscillates with small amplitude about a constant mean temperature. The
average surface temperature of the cylinder is maintained at ∆T and the ambient temperature of the fluid is assumed
to be T∞.

Due to the unsteady flow, the fundamental boundary layer equations may now be written as follows:

∂u
∂x
+
∂v
∂y
= 0 (1)

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
=

dUe

dt
+ Ue

dUe

dx
+ ν

∂2u
∂y2 + gβ(T − T∞) sin

( x
R

)
(2)

ρCp

(
∂T
∂t
+ u

∂T
∂x
+ v

∂T
∂y

)
= κ

∂2T
∂y2 (3)

where x is the stream wise direction distance whereas y, the range of normal direction, the velocity terms (u, v)
are in the (x, y) channels, Ue(x) the external velocity, t the time, ν the kinematic viscosity, T being the temperature
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Figure 1. The physical model and coordinate system

of the fluid in the boundary layer, g the gravitational acceleration, β the coefficient of thermal expansion, R the
radius of the cylinder, κ the thermal conductivity, ρ the density of the fluid and Cp the specific heat. In momentum
equation the pressure gradient term has been written in terms of the outer layer flow and the body force term
gβ(T − T∞) sin(x/R) is due to the buoyancy force under the Boussinesq hypothesis. In fact, U∞ is the far field
velocity, and Ue the outer velocity that is influenced by the oscillating surface temperature.

The boundary conditions for equations (1) to (3) are

y = 0 : u = 0, v = 0, T = Tw(t)
y→ ∞ : u→ Ue(x)F(t), T → T∞

(4)

In equation (4), F(t) is an oscillating function in t and Ue(x) = U∞ sin(x/R) and Tw(t) = ∆T F(t).

Now we introduce the following non-dimensional quantities

u = ν
R ReU, v = ν

R Re1/2V, T−T∞
∆T = G

Y = Re1/2 y
R , X = x

R , τ =
(
ν

R2 Re
)

t
(5)

where, Gr = gβ∆T
ν2 R3, and Re = U∞R

ν
are, respectively, the Grashof number and the Reynolds number. Equations

(1)-(3) then becomes:
∂U
∂X
+
∂V
∂Y
= 0 (6)

∂U
∂τ
+ U

∂U
∂X
+ V

∂U
∂Y
= sin X cos X + λG sin X +

∂2U
∂Y2 (7)

∂G
∂τ
+ U

∂G
∂X
+ V

∂G
∂Y
=

1
Pr
∂2G
∂Y2 (8)

The corresponding boundary conditions are then

Y = 0 : U = 0, V = 0, G = F(τ) = 1 + ε sin(ωτ)
Y → ∞ : U → sin X(1 + ε sin(ωτ)), G → 0 (9)

In Equation (9), ω is the frequency of oscillation, ε(≪ 1) is a positive real number that designates the amplitude
of oscillation in surface temperature, τ is the non-dimensional time. Also Pr is known as the Prandtl number and
defined to be the ratio of the kinematic viscosity to the thermal diffusivity of the fluid and λ = gβ∆TR/U2

∞ =
Gr/Re2 is a non-dimensional parameter known as mixed convection parameter. For a heated cylinder (∆T > 0
that implies λ > 0), both the forced and free convection boundary layers start at the lower stagnation point and

36



mer.ccsenet.org Mechanical Engineering Research Vol. 6, No. 2; 2016

buoyancy force is positive which developed the boundary layer. For a cooled cylinder (λ < 0) the buoyancy force
oppose the development of the boundary layer. In this case, a values of λ is found for which the boundary layer
separates at this point and boundary layer solution is not possible less than this values.

For convenience, we further introduce U = XŪ in the above set of equations and obtain the followings by dropping
the over bar

U + X
∂U
∂X
+
∂V
∂Y
= 0 (10)

∂U
∂τ
+ U2 + XU

∂U
∂X
+ V

∂U
∂Y
=

sin X cos X
X

+ λ
sin X

X
G +

∂2U
∂Y2 (11)

∂G
∂τ
+ XU

∂G
∂X
+ V

∂G
∂Y
=

1
Pr
∂2G
∂Y2 (12)

The respective boundary conditions then become as follows:

Y = 0 : U = 0, V = 0, G = F(τ) = 1 + ε sin(ωτ)
Y → ∞ : U → sin X

X (1 + ε sin(ωτ)), G → 0 (13)

The solution of the above system of differential equations will be obtained in terms of complex functions only,
the real parts of which will have physical significance. We write U, V and G as the sum of the steady and small
oscillating component as mentioned later in (14). The surface temperature and external velocity conditions in (13)
imply the solutions patterns of equations (10)-(12) as defined below

U(X,Y) = Us(X,Y) + ε exp(iωτ)Uo(X,Y)
V(X, Y) = Vs(X,Y) + ε exp(iωτ)Vo(X,Y)
G(X,Y) = Gs(X,Y) + ε exp(iωτ)Go(X,Y)

(14)

where Us, Vs and Gs represent the steady mean flow satisfying the equations:

Us + X
∂Us

∂X
+
∂Vs

∂Y
= 0 (15)

U2
s + XUs

∂Us

∂X
+ Vs

∂Us

∂Y
=

sin X cos X
X

+ λ
sin X

X
Gs +

∂2Us

∂Y2 (16)

XUs
∂Gs

∂X
+ Vs

∂Gs

∂Y
=

1
Pr
∂2Gs

∂Y2 (17)

with boundary conditions
Y = 0 : Us = 0, Vs = 0, Gs = 1

Y → ∞ : Us → sin X
X , Gs → 0 (18)

and for Uo, Vo and Go, the components of the unsteady flow, are then obtained as

Uo + X
∂Uo

∂X
+
∂Vo

∂Y
= 0 (19)

2UsUo + XUs
∂Uo

∂X
+ XUo

∂Us

∂X
+ Vs

∂Uo

∂Y
+ Vo

∂Us

∂Y
+ iωUo

=
sin X cos X

X
+ λ

sin X
X

Go +
∂2Uo

∂Y2

(20)

XUs
∂Go

∂X
+ XUo

∂Gs

∂X
+ Vs

∂Go

∂Y
+ Vo

∂Gs

∂Y
+ iωGo =

1
Pr
∂2Go

∂Y2 (21)

Following are the boundary conditions to be satisfied by the above equations

Y = 0 : Uo = 0, Vo = 0, Go = 1
Y → ∞ : Uo → sin X

X , Go → 0 (22)
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3. Method of Solution

We now propose to integrate the set of equations (15)-(17), that represents the steady and the set of equations
(19)-(21) representing the oscillatory components of the problem by direct finite difference method. These sets
of equations are discretized for numerical scheme using central-difference for diffusion terms and the forward-
difference for the convection terms. Thus we have the following system of algebraic equations for the steady state
equations:

For the momentum equation, we have

A1(Us)i−1, j + B1(Us)i, j +C1(Us)i+1, j = D1 (23)

where

A1 = 1 +
∆Y
2

(Vs)i, j

B1 = −2 − (Us)i, j (∆Y)2 − Xi
(∆Y)2

∆X
((Us)i, j − (Us)i, j−1)

C1 = 1 − ∆Y
2

(Vs)i, j

D1 = − (∆Y)2 sin Xi cos Xi

Xi
− λ (∆Y)2 sin Xi

Xi
(Gs)i, j

and i = 1, 2, 3, · · · ,N, j = 1, 2, 3, · · · ,N for some large N.

For the energy equation, we obtain

A2(Gs)i−1, j + B2(Gs)i, j +C2(Gs)i+1, j = D2 (24)

where

A2 =
1
Pr
+
∆Y
2

(Vs)i, j

B2 = −
2
Pr
− Xi

(∆Y)2

∆X
(Us)i, j

C2 =
1
Pr
− ∆Y

2
(Vs)i, j

D2 = −
(∆Y)2

∆X
Xi(Us)i, j(Gs)i, j−1

In computation, we directly solve the continuity equation for the normal velocity Vs from the following discretiza-
tion:

(Vs)i, j = (Vs)i−1, j + Y j
1
4

((Us)i, j − (Us)i−1, j)

− ∆Y
1
4

((Us)i, j + (Us)i−1, j) − Xi
∆Y
∆X

((Us)i, j − (Us)i−1, j)
(25)

The boundary conditions then take the form

(Us)1, j = (Vs)1, j = 0, (Gs)1, j = 1
(Us)N, j → sin Xi

Xi
, (Gs)N, j → 0 (26)

As above we discretize the set of oscillating parts of the solutions posed in equations (20)-(21) as given below:

For the momentum equation, we have

A3(Uo)i−1, j + B3(Uo)i, j +C3(Uo)i+1, j = D3 (27)
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where

A3 = 1 +
∆Y
2

(Vs)i, j

B3 = −2 − (∆Y)2
(
2(Us)i, j −

Xi(Us)i, j

∆X
− Xi

∂(Us)i, j

∂X

)
C3 = 1 − ∆Y

2
(Vs)i, j

D3 = − (∆Y)2 (
sin Xi cos Xi

Xi
+ λ

sin Xi

Xi
(Go)i, j +

Xi

∆X
(Us)i, j(Uo)i, j−1

− (Vo)i, j
∂(Us)i, j

∂Y
+ iω(Uo)i, j)

For the energy equation, we obtain

A4(Go)i−1, j + B4(Go)i, j +C4(Go)i+1, j = D4 (28)

where

A4 =
1
Pr
+
∆Y
2

(Vs)i, j

B4 = −
2
Pr
− (∆Y)2

(
Xi(Us)i, j

∆X
− Xi

∂(Gs)i, j

∂X

)
C4 =

1
Pr
− ∆Y

2
(Vs)i, j

D4 = − (∆Y)2
(

Xi

∆X
(Us)i, j(Go)i, j−1 − (Vo)i, j

∂(Gs)i, j

∂Y
+ iω(Go)i, j

)
As in the previous case we calculate Vo from the following expressions:

(Vo)i, j = (Vo)i−1, j + Y j
1
4

((Uo)i, j − (Uo)i−1, j)

− ∆Y
1
4

((Uo)i, j + (Uo)i−1, j) − Xi
∆Y
∆X

((Uo)i, j − (Uo)i−1, j)
(29)

Appropriate boundary conditions for the above equations are

(Uo)1, j = (Vo)1, j = 0, (Go)1, j = 1
(Uo)N, j → sin Xi

Xi
, (Go)N, j → 0 (30)

The system of equations (23)-(26) and (27)-(30) are transformed to a system of tri-diagonal algebraic equations
which have been solved using Gaussian elimination technique for (Us)i, j,
(Gs)i, j,(Vs)i, j and (Uo)i, j, (Go)i, j, (Vo)i, j. The simulation is started at X = 0.0, and then out marched to the point
(X = 20.0). During the computation, we consider ∆X = 0.02 and ∆Y = 0.01 that are used for the Xi-and Y j- grids,
respectively. For a given value of X, the iterative procedure is ended if the difference in computing the velocity and
the temperature in the next iteration is < 10−6. Now from the set of equations given in (14), we have the following
expressions to measure the dimensionless real part of axial velocity and the temperature functions as given below:

U(X,Y, τ) = Us(X,Y) + ε(cosωτUi(X,Y) − sinωτUr(X,Y))
G(X,Y, τ) = Gs(X,Y) + ε(cosωτGi(X,Y) − sinωτGr(X,Y))

(31)

In equation (31) Ur,Ui and Gr,Gi are, respectively, the real and imaginary parts of the oscillating velocity function,
Uo(X,Y) , and the oscillating temperature function, Go(X, Y). The physical quantities that are important from
application point of view are the shear stress, τw, and the surface rate of heat transfer, qw. These can be measured
from the non-dimensional relations (32) and (33).

τw = X
[
∂Us(X, 0)

∂Y
+ ε|A1| cos(ωτ + α1)

]
(32)
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and

qw = −
[
∂Gs(X, 0)

∂Y
+ ε|A2| cos(ωτ + α2)

]
(33)

Here |A1| and |A2| are the amplitudes and α1 and α2 are the phase angles, respectively, for the local skin friction
and the local heat transfer for the oscillating flow and temperature field which readily available from the following
relations:

|A1| = X(
√

(∂Ur/∂Y)2 + (∂Ui/∂Y)2) (34)

|A2| =
√

(∂Gr/∂Y)2 + (∂Gi/∂Y)2 (35)

and

α1 = tan−1
(
∂Ui/∂Y
∂Ur/∂Y

)
(36)

α2 = tan−1
(
∂Gi/∂Y
∂Gr/∂Y

)
(37)

Once we know the values of and from the solutions of the set (15)-(18) as well as that of and from the solutions of
equations (19)-(22), we get readily the values of the physical quantities, namely, the shear stress, τw, and the rate
of heat transfer, qw, at the surface of the cylinder.

Numerical values of the amplitudes, |A1| and |A2|, and the phase-angles, α1 and α2, of the oscillating shear-stress
and heat transfer rate, respectively, are obtained for different values of the physical parameters, ω, the frequency
parameter, Pr, the Prandtl number and λ, the mixed convection parameter, against curvature parameter X. The
results presented and discussed in the following section are based on the solution obtained by the method in this
section.

Table 1(a): Numerical values of skin-friction U
′
s(X, 0) for different values of λ while Pr=1.0

X
λ = −1.0 λ = 0.0

Present DNS Hossain Merkin (1977) Present DNS Hossain Merkin (1977)
et al. (1999) et al. (1999)

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 0.1254 0.1254 0.1256 0.2422 0.2424 0.2427
0.4 0.2261 0.2255 0.2266 0.4617 0.4618 0.4627
0.6 0.2789 0.2763 0.2784 0.6380 0.6373 0.6393
0.8 0.2554 0.2516 0.2554 0.7541 0.7520 0.7552
1.0 0.1061 0.0985 0.1069 0.7977 0.7936 0.7982
1.2 0.7619 0.7554 0.7615
1.4 0.6446 0.6353 0.6429
1.6 0.4434 0.4309 0.4405
1.8 0.1074 0.0878 0.1069

4. Results and Discussion

The section presents our numerical results that is based on the primitive variable formulation of the direct numerical
simulation (DNS). We discuss briefly the flow regime that governs the oscillating mixed convection flow over a
heated circular cylinder. The results are summarized with respect to various values of the frequency parameter
(ω), the amplitude of oscillation (ε), and the mixed convection parameter (λ). We have chosen a unique value
of Prandtl number, Pr=1.0, for most of the results unless it is stated otherwise. The domain of the numerical
solution starts from the lower stagnation point of the cylinder and proceeds around the cylinder up to the boundary
layer separation point. In order to asses the accuracy of our method, we have compared the surface heat transfer
−G′s(X, 0) and the surface shear stress, U′s(X, 0) since experimental data and results from other authors are available
for these quantities. The surface heat transfer and the surface shear stress as mentioned above for steady flow are
tabulated in Table-1(a,b) and Table-2(a,b) against the curvature parameter X in the interval [0, π]. The results are
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Table 1(b): Numerical values of skin-friction U
′
s(X, 0) for different values of λ while Pr=1.0

X
λ = 1.0 λ = 2.0

Present DNS Hossain Merkin (1977) Present DNS Hossain Merkin (1977)
et al. (1999) et al. (1999)

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 0.3427 0.3431 0.3436 0.4342 0.4348 0.4354
0.4 0.6621 0.6627 0.6639 0.8440 0.8449 0.8464
0.6 0.9375 0.9374 0.9398 1.2074 1.2079 1.2106
0.8 1.1514 1.1502 1.1539 1.5060 1.5053 1.5094
1.0 1.2919 1.2888 1.2938 1.7263 1.7240 1.7295
1.2 1.3531 1.3478 1.3541 1.8615 1.8569 1.8637
1.4 1.3361 1.3283 1.3356 1.9110 1.9037 1.9117
1.6 1.2481 1.2379 1.2459 1.8769 1.8705 1.8793
1.8 1.0935 1.0902 1.0986 1.7745 1.7689 1.7781
2.0 0.9066 0.9033 0.9117 1.6194 1.6143 1.6236
2.2 0.7020 0.6985 0.7063 1.4295 1.4243 1.4334
2.4 0.5018 0.4978 0.5048 1.2217 1.2163 1.2248
2.6 0.3274 0.3230 0.3287 1.0101 1.0043 1.0123
2.8 0.1985 0.1937 0.1973 0.8028 0.7969 0.8043
3.0 0.1318 0.5992 0.5930 0.6002
π 0.1239 0.4548

Table 2(a): Numerical values of the rate of heat-transfer −G
′
s(X, 0) for different values of λ while Pr=1.0

X
λ = −1.0 λ = 0.0

Present DNS Hossain Merkin (1977) Present DNS Hossain Merkin (1977)
et al. (1999) et al. (1999)

0.0 0.5068 0.5066 0.5067 0.5706 0.5704 0.5705
0.2 0.5019 0.5015 0.5018 0.5669 0.5669 0.5668
0.4 0.4867 0.4861 0.4865 0.5562 0.5563 0.5564
0.6 0.4597 0.4588 0.4594 0.5396 0.5388 0.5391
0.8 0.4162 0.4149 0.4160 0.5151 0.5141 0.5145
1.0 0.3315 0.3292 0.3326 0.4832 0.4819 0.4826
1.4 0.3934 0.3914 0.3928
1.8 0.2092 0.2031 0.2114

obtained for different values of the mixed convection parameter λ = −1.0, 0.0, 1.0, 2.0 when Pr =1.0 and compare
with that of Merkin (1967), Hossain et al. (1999). It seems reasonable to conclude that the agreement is acceptable.

The primitive variable transformation method for the internal domain of frequency are engaged in searching the
solutions of the system governing the oscillating mixed convection flow along uniformly heated circular cylinders.
The foregoing coupled differential equations (20) and (21) together with the boundary conditions (22) have been
numerically integrated by the methodology discussed above. It is observed that the unsteady parts of the flow
and the temperature fields are dependent on the physical quantities, like the mixed convection parameter λ, the
Prandtl number, Pr, the oscillation frequency on the surface temperature, ω, and the amplitude of oscillation, ε.
Therefore, simulated results are displayed in terms of amplitude-phase and the heat transfer rate for values of
λ = 2.0, 3.0, 5.0, 10.0 and for fluid having Prandtl number, Pr=1.0. Effects of the aforementioned parameters are
discussed in details in the following paragraphs.

4.1 Effect of Physical Parameter on Amplitude and Phase

The numerical values of (|A1|, α1) and that of (|A2|, α2) for the changing flow are distributed in figures 2-3. Nu-
merical values of |A1| are depicted in Fig. 2(a) for values of λ = 2.0, 3.0, 5.0, 10.0 as long as Pr=1.0, ω = 0.5
and ωτ = π/4. It is seen from this figures that the amplitude decreases with increase of X and touches to its
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Table 2(b): Numerical values of the rate of heat-transfer −G
′
s(X, 0) for different values of λ while Pr=1.0

X
λ = 1.0 λ = 2.0

Present DNS Hossain Merkin (1977) Present DNS Hossain Merkin (1977)
et al. (1999) et al. (1999)

0.0 0.6158 0.6156 0.6156 0.6517 0.6516 0.6497
0.2 0.6126 0.6126 0.6115 0.6489 0.6488 0.6471
0.4 0.6036 0.6037 0.6028 0.6407 0.6408 0.6393
0.6 0.5889 0.5891 0.5885 0.6274 0.6276 0.6264
0.8 0.5686 0.5689 0.5686 0.6092 0.6095 0.6086
1.0 0.5431 0.5434 0.5435 0.5865 0.5867 0.5863
1.4 0.4773 0.4776 0.4785 0.5289 0.5290 0.5292
1.8 0.3950 0.3951 0.3967 0.4592 0.4590 0.4601
2.0 0.3490 0.3491 0.3509 0.4215 0.4212 0.4225
2.4 0.2523 0.2520 0.2540 0.3450 0.3444 0.3460
2.8 0.1627 0.1616 0.1634 0.2723 0.2714 0.2730
3.0 0.1357 0.2375 0.2364 0.2381
π 0.1314 0.2125

minimum point near X = π on the cylindrical surface. The nature of this change of curvature is corresponding to
that appearing for time independent flow (see Merkin, 1977). Further we see that amplitude of variation increases
back to increase in λ. However, the numerical values of the changing phase α1 of the skin-friction are displayed in
Fig. 2(b). Phase angles α1 in the varying skin friction decrease reaming to increase of λ including the difference
of the curvature X. If λ=2.0 then this trend primarily grows up and for remain numerical values of λ it is reduces
with the increase of X and there is a phase lag. In the little frequency domain the result of the integral notice that
the periodic term of shear stress reduces in its amplitude with increasing frequency.

Figure 2. (a) Amplitude and (b) phase of skin-friction at Pr=1.0, ω = 0.5, ωτ = π/4 while λ = 2.0, 3.0, 5.0 and
10.0.

Figures 3(a) and 3(b) represent the numerical results of the amplitude |A2| and the phase α2 respectively, obtained
for the fluctuating coefficients of heat transfer for different λ as long as fluids Prandtl number Pr=1.0. It is seen
from figure 3(a) that the amplitude |A2|, of the rate of heat transfer increases when the parameter λ is increasing.
Amplitude of heat transfer leads to decrease along the surface from its lower point to the upper of the cylinder for
any λ. The relative maximum value of the amplitude arises at the lower stagnation point X = 0. In figure 3(b) it
is observed that phase of oscillation α2 in the rate of heat transfer are decreases owing to increase of λ untill it
reaches to the curvature X = π. Continually there is a phase lead for parameter λ.

4.2 Effect of Physical Parameter on Streamlines and Isotherms

Now we try to observe the effect of pertinent physical parameters, such as, λ and ω controlling the present problem
on the flow pattern and the temperature distribution in terms of streamlines and isotherms in the boundary layer
regime along the surface of the cylinder through figures 4 to 7. Following relations are considered to measure the
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Figure 3. (a) Amplitude and (b) phase of heat transfer at Pr=1.0, ω = 0.5, ωτ = π/4 while λ = 2.0, 3.0, 5.0 and
10.0.

values of oscillating stream function and oscillating temperature function.

ψ = ψs(X,Y) + ε(cosωτψi(X,Y) − sinωτψr(X,Y)) (38)

G = Gs(X,Y) + ε(cosωτGi(X,Y) − sinωτGr(X,Y)) (39)

In equation (38) ψs, ψr, and ψi are measured from the following expression:

ψs(X,Y) =
∫ Y

0 Us(X, χ)dχ, ψr(X,Y) =
∫ Y

0 Ur(X, χ)dχ,
ψi(X,Y) =

∫ Y
0 Ui(X, χ)dχ

(40)

Figure 4. Streamlines along a circular cylinder at Pr=1.0, ω = 1.0, ωτ = π/4 , ε = 0.01 for (a) λ = 3.0 and (b)
λ = 10.0.

Figure 5. Isotherms along a circular cylinder at Pr=1.0, ω = 1.0, ωτ = π/4 , ε = 0.01 for (a) λ = 3.0 and (b)
λ = 10.0.

Numerical solutions are obtained for Prandtl number, Pr=1.0, amplitude of oscillation, ε = 0.01, different values
of mixed convection parameter λ and frequency of oscillation ω.
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A comparisons of streamlines and isotherms for values of λ = 3.0 and 10.0 are shown in figures 4 and 5. From these
figures one can observe that there is relatively a conspicuous change happens both for streamlines and isotherms.
In figure 4, it is found that in upper surface ψmax = 19.53 and in lower surface ψmin = 1.20. Here the viscosity is
minimum at the upper boundary and maximum at the lower boundary.

For λ = 3.0, the momentum boundary layer as well as thermal boundary layer become higher for which the flow
rate stronger near the surface of the cylinders; on the other hand, for λ = 10.0, weaker flow is seen near the
surfaces of the cylinder, since in this case both the momentum and thermal boundary layers become thinner. From
the given isotherms one can see that, the fluid temperature is higher near the lower boundary and lower near the
upper boundary. Nearly parallel isotherms in the upper part of the cell indicate that heat transport is almost entirely
by conduction.

At the present stage, figures 6 and 7 provided the comparison between streamlines and isotherms, respectively in
the same way as above for λ = 2.0, Prandtl number Pr=1.0, amplitude of oscillation, ε = 0.01 at ωτ = π/4 and for
ω = 1.0, 4.0 which designates the frequency of oscillation. It is apparent from these figures that there is relatively
little but significance change in the streamlines and isotherms. When the curvature parameter X is increasing, then
initially streamlines in terms of velocity field is decreasing. For ω = 1.0, the momentum boundary layer becomes
higher and we have a stronger flow. But for increasing the frequency of oscillation i.e., for ω = 4.0, the momentum
boundary layer becomes thinner and we have a weaker flow in the downstream region. The flow remains almost
symmetric about the vertical centerline.

Figure 6. Streamlines along a circular cylinder at Pr=1.0, λ = 2.0, ωτ = π/4 , ε = 0.01 for (a) ω = 1.0 and (b)
ω = 4.0.

Figure 7. Isotherms along a circular cylinder at Pr=1.0, λ = 2.0, ωτ = π/4 , ε = 0.01 for (a) ω = 1.0 and (b)
ω = 4.0.

4.3 Effect of Physical Parameter on Transient Shear Stress and Heat Transfer

Numerical values of the transient shear stress, τw, and heat-transfer, qw, against τ obtained from the formulas (32)
and (33), which are presented graphically in figures through 8 and 9. Effect of the frequency term, ω and the values
of mixed convection parameter λ on the improvement of transitory heat-transfer and skin-friction coefficients, for
Pr = 1.0, ωτ = π/4 and ε = 0.01 are shown in the respective figures. In figures 8(a) and 8(b), numerical estimates
of the changing heat-transfer and skin-friction coefficient versus the non-dimensional time function τ have been
shown for λ = 2.0, 5.0 and 10.0. From these figures, it is observed that at every station of τ, owing to increase in
the value of λ, leads to increase in the magnitude of the oscillating shear stress and an decrease in the oscillating
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heat transfer coefficients. But the phase of oscillation is increasing in both phases constants on account of skin
friction and heat transfer with the increasing values of λ. It is also remarked that amplitude oscillation is exceeding
for transitory heat transfer constants than that of the transitory shear stress coefficients.

Figure 8. Transient (a) skin-friction coefficient and (b) heat transfer coefficient at Pr=1.0, ω = 1.0, ωτ = π/4,
ε = 0.01 for λ = 2.0, 5.0 and 10.0.

Figure 9. Transient (a) skin-friction coefficient and (b) heat transfer coefficient at Pr=1.0, λ = 2.0, ωτ = π/4,
ε = 0.01 for ω = 0.0, 1.0 and 2.0.

Now we are looking into the effect of change on the oscillating skin-friction and heat transfer from the surface.
Effect of these geometric varieties taking the value of ω to be 0.0, 1.0 and 2.0 on the skin-friction and heat transfer
are shown, respectively, in figures 9(a) and 9(b). In this regards Pr = 1.0, λ = 2.0 and ε = 0.01 at ωτ = π/4 have
been taken. In these figures, one can see that when the frequency of oscillation ω increased magnitude of the skin
friction get decreased and magnitude of the heat transfer get increased at every τ station. When ω = 0.0 i.e there is
no frequency of oscillation leads the amplitude of oscillation for both skin friction and heat transfer constants and
graphically represent a straight line as shown in figures 9(a) and 9(b). Finally, amplitude of oscillation for both skin
friction and heat transfer are increased with the increase of frequency of oscillation. This is expected since rise of
frequency of the surface temperature should lead to increment the frequency of oscillation of the shear-stress and
temperature of the fluid in the vicinity of the surface of the cylinders.

5. Conclusion

The analysis carried out here is concerned with two-dimensional mixed convection boundary value problem over a
horizontal circular cylinder with oscillating surface temperature with time dependent velocity, which is immersed
in a viscous incompressible fluid. We have attempted to find how the parameter λ and the frequency parameter
ω affect both for steady and oscillating flow. Solutions of the transformed couple local non-similar boundary
layer equations are integrated numerically employing the finite difference method. The steady state problem that
was investigated by Merkin (1977) and Hossain et al. (1999) has been revisited by the aforementioned (DNS)
method and our results are visually good well with the respective authors. The results of oscillating flow have been
obtained in terms of amplitude and phase of local skin friction and rate of heat transfer with the change of the
physical parameters, namely, λ, Pr, ω and ε. Effects of the identical parameters are also shown on the oscillating
shear stress and surface rate of heat transfer as well as on the oscillating streamlines and isotherms. From this study
we can draw the following conclusions:
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• When the curvature parameter X increases, the amplitude of the skin friction decreases. Also amplitude of
the skin friction rises remaining to increment in the values of mixed parameterλ. Phase angle α1 decrease
owing to increase for the parameters λ with the distance of the curvature X and has a phase lag.

• The amplitude |A2| increases with the rise of the parameter λ upto the upper stagnation point of the cylinder.
Phase of oscillation α2 are decreases owing to increase of the parameter λ upto the curvature X = π and
always has a phase lead.

• The viscosity is minimum at the upper boundary and maximum at the lower boundary. For λ = 3.0, the
momentum boundary layer become higher for which the flow rate stronger and for λ = 10.0, weaker flow is
seen near the surfaces of the cylinder, since in this case the momentum boundary layers become thinner.

• Isotherms show that, the temperature of the fluid is higher near the inferior and lower near the upper bound-
ary.

• Increasing values of λ, leads to increase in the magnitude of the oscillating shear stress and an decrease in
the oscillating heat transfer coefficients. Also amplitude of oscillation for both skin friction and heat transfer
are increased with the increase of frequency of oscillation.

Nomenclature

R Radius of the cylinder
g Acceleration due to gravity
Cp Specific heat at constant pressure
Gr Grashof number
Re Reynolds number
Pr Prandtl number
qw Surface rate of heat transfer
T Temperature of the fluid in the boundary layer
T∞ Temperature of the ambient fluid
Tw Temperature of the heated surface
∆T Temperature difference, Tw − T∞
G Dimensionless temperature funcion
u, v Dimensional fluid velocities in the x- and y- direction, respectively
U,V Dimensionless fluid velocities in the X- and Y- direction, respectively
x, y Coordinates measuring distance round and normal to the cylinder, respectively
X,Y Dimensionless coordinates measuring distance round and normal to the cylinder, respectively
U∞ Free stream velocity
Ue External velocity
t Time
τw Dimensionless shear-stress

Greek letters
ψ Stream function
κ Thermal conductivity of the fluid
β Coefficient of thermal expansion
λ Mixed convection parameter
ω Frequency of oscillation
ε Amplitude of oscillation
ν Kinematic viscosity
τ Dimensionless time
ρ Density of the fluid

Subscripts-Superscripts
w Surface conditions
∞ Ambient condition
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s Steady component
o Unsteady component
′ Differentiation with respect to Y
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