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Abstract 
The solution of a problem of coefficient of damper drive with a double-layer porous ring and squeeze film of 
lubrication is presented at its combined feed, and also the account of permeability of porous layers. Novelty of the 
solution is simultaneous introduction in analytical model of variety of variable factors which were considered 
separately earlier. 
Keywords: Hydrodynamics, finite-dimensional damper, forced series lubricant feed, porous ring, permeability 
anisotropy in the radial and circumferential directions 
1. Introduction 
Damping vibrations of the various physical nature play an important role in increasing the general resource of 
bearing assemblies by decreasing the level of vibrations, transmitted to the body.  
Damping effect is defined by the transmission coefficient value of the damper, which depends on the structure and 
the material of the last.  
The considered damper represents the analogue of the journal bearing with the outer ring, made from porous 
sintered material, and the oil layer between this ring and the inner element of the damper. The liquid lubricant, the 
layer of which participates in damping, is fed into the running clearance of the damper under pressure while the 
consequent change of its feed direction from the radial into axial one. Besides, when solving this problem the 
permeability anisotropy of the damper porous bushing is taken into consideration.  
In similar tasks, dedicated to the hydrodynamic designs of the radial journal bearings of the finite length with porous 
bushings (Cusano & Conri, 1974; Akhverdiev & Mulenko, 2002; Akhverdiev, Mukutadze, Novgorodova, & 
Cherkasova, 2013; Cusano & Funk, 1977; Mukutadze, Aleksandrova, Konstantinov, & Shevchenko, 2012; 
Zadorozhnaya, 2015; Rozhdestvensky & Zadorozhnaya, 2014; Tolpinskaya, 1986; Rahmatabadi, 2010; Akhverdiev, 
Kochetova, & Mukutadze, 2009; Akhverdiev, Kopotun, & Mukutadze, 2007; Akhverdiev & Kopotun, 2005), their 
permeability is considered to be constant, and the feed lubricant direction is not taken into consideration. Such set of 
variable factors cannot provide the stable liquid mode. 
The work is devoted to the design model development of the heterogeneous porous bearing of the finite length when 
forced lubricant feed is available (Akhverdiev, Mukutadze, Fleck, Zadorozhnaya, & Polyakov, 2013). 
Generalization of this task for cases, when the permeability is changing both in the radial and circumferential 
directions will allow solving the requested task. 
So uniting into the common design complex of the factors, the indicated above increases the design models accuracy 
and approximates their results to the practice requirements. 
2. Problem Setting and Solution  
We use then solving the analogue in the damper and radial journal bearing with porous bushing operating conditions. 
Motion equations of the rotor for the shaft center nonstationary motion in the directions ξ and η (Figure 1) can be 
written as: 
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Figure 1. Damper design with the compressed oily film and porous cage 
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We assume the operating load W is statical and directed in accordance with the design on the picture 2. The damper 
load causes initial displacements, defined by the formulas δX = 0andδY=W/KY Having accepted that KX= KY= K, ߝሶ = 
ė/C,T=ωrt and X = ecosφ,Y = – esinφ, it is possible to present the equations (1) and (2), as follows: 
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(4) 

Force values Fξ and Fη we get by pressure integration in the lubricant layer by the parameters ξ and η. With this aim 
it is necessary preliminary to solve the equation for pressures in the porous ring and the liquid oil layer, as well as 
agree these solutions by the boundary line.  
It is necessary to note, that the considered damper (see Figure 1) represents itself the analogue of the radial bearing 
with the porous bushing. That’s why at first it is considered the non-stationary laminar flow of the liquid lubricant 
while forced lubricant feedin the radial and axialdirections. 
The bearing with the heterogeneous porous layer is considered to be statical, and the shaft motion – preset (see 
Figure 2). The porous layer permeability is preset by the following dependence  
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Here A0 is preset constant value, k1(z/L) is known non-dimensional function, L is bearing length, H is porous layer 
thickness. 
 

 
Figure 2. Finite radial bearing with porous ring  
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Further we will consider that the coordinate of the surface y=–H, the porous layer permeability in the direction of the 
axisz is changed by the normal law, and the lubricant feed pressure is subordinated to the parabolic relation. 
Equation, defining the lubricant flow in the porous matrix, is represented by  

 2 * 2 * * *
1

12 2
1 0,kp p z p y pk

y z L H y H z z
∂∂ ∂ ∂ ∂ + + + = ∂ ∂ ∂ ∂ ∂ 

 (6) 

wherey, z are rectangular coordinates, p* is hydrodynamic pressure in the porous layer. 
The pressure in the lubricant layer (between the shaft and the bushing) is defined on the basis of Reynolds modified 
equation (Gear, 1972) within the limits of the short bearing model  

 3
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where h = c(1+εcosθ) is lubricant layer thickness; 
 сis radial clearance; x, y, z are rectangular coordinates; 
 е is shaft eccentricity; ωb is bushing angular speed; 
 ωj is shaft angular speed; ωL is load angular speed; 
 υ0 is speed component indirection to y on the boundary between the porous bearing and the lubricant layer. 
Further the load angular speeds and bearing bushing are accepted as equal to zero. 
The value υ0 is subordinated to Darcy's law 
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Where k’ is porous layer material permeability. 
We will proceed to the non-dimensional parameters by formulas 
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We will set the law of lubricant feed on the surface Y = –1, as well as porous layer permeability on this surface as 
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Substituting (8)–(10) into the equations (6) and (7), we will get: 
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Boundary conditions for equation (11) and (12) are accepted accordingly as: 
P*=P when Y=0;  *

gP P=   when Y=–1; 
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gP  is lubricant feed pressure; 
aP  is atmospheric pressure; 

HP  is pressure in the initial cross section; KP  is pressure 

in the final cross section. 
Assuming the porous layer thickness to be small, the equation (11) we will average by the lubricant layer thickness. 
Then the equation (11) will be written as  
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Equation (15) solution, satisfying the main boundary conditions (13), we will search as  
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and solving the equation (12) taking into consideration (17), we will get the following formula: 
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We will proceed to the case of axial lubricant feed through the clearance. 
The equation (11) we will average by the clearance: 
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The equations (11) and (12) solution taking into consideration boundary conditions (14) we will search as  
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Then P for axial lubricant feed we will get as 
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We will proceed to define the intensification in the oily layer. 
In the considered case this intensification is calculated by integrating by the positive area of the pressure 
distribution. 
In case of the incomplete filling with the lubricant we have: 
in case of the lubricant feed in the radial direction of the bearing: 
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Here the formula for P is defined by the formula (19); 
in case of the lubricant feed in the axial direction: 
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Where P is defined by the formula (24). 
In case of the complete clearance filling with the lubricant we will have: 
а) in case of the lubricant feed in the radial direction  
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Here P is defined by the formula (19); 
b) in case of the lubricant feed in the axial direction  
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Where P is defined by the formula (24). 
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Substituting the obtained analytic expressions Fξ and Fη in the equations (3) and (4), we will get: 
– in case of the incomplete clearance filling with the lubricant: 
а) in case of the lubricant feed in the radial direction 
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b) in case of the lubricant feed in the axialdirection 
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– in case of the complete bearing clearance filling with the lubricant we will have 
а) in case of the lubricant feed in the radial direction  
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 
 (37) 

 3 3
2

2 3

18 ?
22 sin ;

r r r

R L
u T

mD C mc

 πμ ε ϕ      ω ω εϕ + εϕ = − − ϕ −    ω ω ω    


  

 (38) 

b) in case of the lubricant feed in the axialdirection 

 23 3
2

3 2 2 2
2 32 6Ф– cos ;

7r r r r

R L a u KT
mC D H mc m

    πμ ε βε ω ω ⋅ε ε − εϕ = + ϕ − −     ω ω ω ω      

 
 (39) 

 3 3
2

2 3

116
22 sin .

r r r

R L
u T

mD C mc

 πμ ϕ −      ω ω εϕ + εϕ = − − ϕ −    ω ω ω    


  

 
(40) 

We will insert the notation   
3

3 ,
r

R LB
mC
μ=

ω
,uU

mC
= ,s

K
mω = ,s

s
r

ωΩ =
ω

,j

r

ω
Ω =

ω

  
,Tβ = ϕ − Ω  

Where B is damper parameter; U is dimensionless imbalance; ωS is rotor self-frequency; ΩS and Ω is shaft self and 
angular frequency. 
Equation (33)–(36), describing shaft centre stationary motion, and (37) – (40), describing its non-stationary motion, 
gets as follows: 
а) given the shaft stationary motion: 

 
( )

( )
2

2 2 2
1 1 1 14

Ф 3 1072 sin 4 cos3 3cos 2sin 136 cos 0;
2 4870

g
s

L PB b U
D H

L

≈  επ β    θ + ε θ + θ − θ + + + Ω β − Ω ε =          

 (41) 

 
( )

( )
2

21
1 1 1 4

Ф cos 1072 cos 4 3 sin sin 3 136 sin 0.
4835

gPLB b U
D H

L

≈  θ β   θ + ε π + ε θ − ε θ + + − Ω β =        

 (42) 
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( )

( )
2

2 2 2
1 1 1 12

Ф 3sin 4 cos3 3cos 2sin cos 0;
27

s
L aB b U
D H

L

 β επ   θ + ε θ + θ + θ + + Ω β − Ω ε =        

 (43) 

 
( )

( )
2

21
1 1 1 2

2Ф coscos 4 3 sin sin 3 sin 0;
7

aLB b U
D H

L

 β θ  θ + ε π + ε θ − ε θ + − Ω β =     

 (44) 

b) given the shaft non-stationary motion 

 2
2 2 2 2

2 4

3Ф16 107 136 cos ;
70 48

g
s

P L
BL U

D H

≈ εε β  ε − εϕ = π + + + Ω β − Ω ε   
 

 
 (45) 

 2

2
2

18
22 sin ;

B L
U

D

 π ε β + Ω − 
 εϕ + εϕ = − Ω β


    (46) 

 2 2 2 2
2 2

32 6Ф– 2 cos ;
7 s

aB L U
D H

ε βε ε εϕ = π − + Ω β − Ω ε 
 

   (47) 

 
2

2
2

116
22 sin .

B L
U

D

 π β + Ω − 
 εϕ + εϕ = − − Ω β


    (48) 

Equations (41)–(48) have been calculated by the numerical method, developed by Gear (1972). The results of the 
numerical analysis are presented in the Figures 3–6. All they comply with the zero initial speeds and the final 
perturbance of the initial shaft position. 
3. Findings and Their Discussion 
Transmission coefficient is defined as the ratio of the scalar force, transmitted to the body, to the scalar centrifugal 
force of the disbalance, namely at the totally fixed support the transmission coefficient is equal to one. It is 
necessary to note, that under several conditions of tribosystem operation, the damper is even capable to reinforce the 
imbalance impact. Due to that it is very important to define the operating condition and the damper outer porous ring 
permeability, which would lead to the damping of the transmitted force. 
Scalar transmitted force FTP we will define as RSS (root of sum of squares) from the sum of squares of its 
constituents   

 ( )
1

2 22
трF F Ke Fξ η

 = − +  
. (49) 

For the case of the lubricant feed into the radial and axial directions when the shaft center stationary motion the 
module is defined with the help of the formulas (25)–(28), and when the nonstationary – with the help of the 
formulas (29)–(32).  
As the disbalance module is equal to uω2, then the transmission coefficient Tr can be represented by the formula: 

 ( )
1

2 22
тр

2 2r

F Ke FF
T

u u
ξ η

 − +  = =
ω ω

.  (50) 

For the shaft center stationary and nonstationary motion while lubricant feed in the radial and axialdirections the 
transmission coefficient Tr is defined with the help of the formula (49). 
The dampers of the described structure provide the significant reduction of the operational load variation effect and 
shaft disbalance on the journal rolling contact bearings. 
So, on the basis of the fulfilled calculations it is established, that in the researched area the considered dampers with 
the porous ring while forced lubricant feed in the radial and axialdirections in consideration of the porous layer 
permeability in the models reduce effectively the transmitted forces of the disbalance. By the results of the 
numerical calculations the graphs are constructed, given on the pictures 3–6. The analysis of the given computes 
models and graphs allows making the following conclusions. 
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Figure 3. Dependence of the stationary transmission coefficient from T parameter: 

B=0,1; Ω=1,1; L
H =0,1; 3

0

C
HA=Φ ; 0,01;β = gp

≈

=1,1; ap~ =1,1; 
н 0,04 мПа;P = к 0,03мПа;P =  

1 2(0) 0,8; 0; :ε = θ = θ = π  

1) Ф 0,001; 2) Ф 0,0015; 3) Ф 0,02;
4) Ф 0, 01; 5) Ф 0, 015; 6) Ф 0, 03; 7) Ф 0, 04

= = =
= = = =

 

 

 

Figure 4. Dependence of the stationary eccentricity ε of damper component from the disbalance eccentricity U: 

 

B=0,2; Ω=1,1; L
H =0,1; 3

0

C
HA=Φ ; 0,1;β = gp

≈

=1,5; ap~ =1,5; 
н 0,04 мПа;P = к 0,03мПа;P =  

1 2(0) 0,8; 0; :ε = θ = θ = π  
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Figure 5. Dependence of the non-stationary eccentricity ratio of the damper from the disbalance eccentricity: 

1 2

= 0, 4; 0,3; 1,1; 0,5; (0) 0,1;

(0) 0,8; 0,1; 0; 2 :

1) Ф 0,001; 2) Ф 0,005; 3) Ф 0,004;
4) Ф 0,01; 5) Ф 0,03

sB U
H

L

= Ω = Ω = ε =

ε = = θ = θ = π

= = =
= =



 

 

Figure 6. Dependence of the disbalance eccentricity from non-stationary eccentricity ratio of the damper: 

1 2

= 0, 4; 0,2; 1,1; 0,6; (0) 0;

(0) 0,9; (0) ? ,6; (0) 0; 0,1;

0; 2 :
1) Ф 0,001; 2) Ф 0,005; 3) Ф 0,0055;

4) Ф 0,015; 5) Ф 0,035

sB U
H

L

= Ω = Ω = ε =

ε = β = β = =

θ = θ = π
= = =

= =




 
4. Conclusion  
The obtained findings show, that the dampers of the considered structure (with porous anisotropy outer ring and the 
compressed oily layer) provide due to the transmission coefficient the sufficient reducing of the vibration impact on 
the radial bearings. 
Besides, it is noted, that the sequent forced lubricant feed in the axial and radial directions provides steadier 
operation both of dampers, and the radial bearings with porous bushing. 
Acknowledgments 
The work has been fulfilled under the financial support of the Ministry of Education and Science of Russia within 
the Federal target program «Researches and developments by the priority directions of the scientific and 
technological complex of Russia directions for 2014–2020 years», Agreement about providing subsidies 
№ 14.607.21.0040 dd. 22.07.2014, project RFMEFI60714X0040. 
References 
Akhverdiev, K. S., & Kopotun, B. Е. (2005). Mathematical model design of the hydrodynamic calculation of the 

conical bearings. Vestnik of RSTU, 3, 5–9.  



mer.ccsenet.org Mechanical Engineering Research Vol. 6, No. 2; 2016 

10 

Akhverdiev, K. S., & Mulenko, O. V. (2002). About the stability of double-layer porous radial bearings. Vestnik of 
RSTU, 3, 5–7.  

Akhverdiev, K. S., Kochetova, S. F., & Mukutadze, М. А. (2009). Non-stationary mathematical model of the 
hydrodynamic lubrication of the heavy-loaded composite conical bearing with the porous layer on its 
operational surface in consideration of its structural peculiarity. Vestnik of RSTU, 1, 135–43.  

Akhverdiev, K. S., Kopotun, B. Е., & Mukutadze, М. А. (2007). Journal dynamic stability in the conical bearing 
with the porous layer on the operational surface. Friction, Tear and Wear, 28(4), 361–6.  

Akhverdiev, K. S., Mukutadze, M. A., Novgorodova, V. S., & Cherkasova, T. S. (2013). Hydrodynamic calculation 
of double-layer infinitely long porous bearing with consideration of porous layer permeability anisotropy and 
inertial forces. Vestnik of DSTU, 5/6(74), 36–43. 

Akhverdiev, K. S., Mukutadze, М. А., Fleck, B. М., Zadorozhnaya, N. S., & Polyakov, Е. V. (2013). Calculation 
model of the hydrodynamic lubrication of the heterogeneous finite porous bearing, operating in the steady 
non-stationary friction mode when the forced lubricant feed is available. Engineering vestnik of Don. Retrieved 
from http://ivdon/magazine/archive/n3y2013/1765 

Cusano, C., & Conri, C. (1974). About the stability of the porous radial bearings. Construction and technology of 
the machine-building, 2, 206–216. 

Cusano, C., & Funk, P. E. (1977). Research of the transmission coefficient of the elastic rolling-contact bearing in 
the damper with the compressed film and the porous cage. Problems of friction and lubrication: Theor. Amer. 
Principles of eng.-mech., 1, 54–61. 

Gear, C. W. (1972). Numerical Initial Value Problems in Ordinary Differential Equations. New York: Prentice-Hall, 
Inc., Englewood Cliffs. 

Mukutadze, M. А., Aleksandrova, Е. Е., Konstantinov, А. А., & Shevchenko, А. I. (2012). Hydrodynamic 
calculation of the radial porous bearing of the infinite length with the increased bearing capacity in 
consideration of the inertial forces. Vestnik of RSTU, 2(46), 194–197.  

Rahmatabadi, A. D. (2010). Nekoeimehr M., Rashidi R. Micropolar lubricant effects on the performance of 
noncircular lobed bearings. Tribology International, 43, 404–13. 

Rozhdestvensky, Y., & Zadorozhnaya, E. A. (2014). simulation of the thermal state of heavily loaded tribo-units and 
its evaluation.Bulletin of the South Ural State University. Mathematical Modelling, Programming and 
Computer Software, 7(4), 51–64. 

Tolpinskaya, N. B. (1986). Porous bearing of the finite length with lubricant feed through the insertion pockets.  
Zadorozhnaya, E. A. (2015). Solving a thermohydrodynamic lubrication problem for complex-loaded sliding 

bearings with allowance for rheological behavior of lubricating fluid. Journal of Machinery Manufacture and 
Reliability, 44(1), 46–56. 

 
Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/4.0/). 


