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Abstract

An adaptive truss is a truss structural system equipped with functional truss members, such as length-adjustable
members, shape memory alloy (SMA) members, spring-dashpot members, and so on. This is a representative
example of so-called adaptive structure. In this study, we deal with the dynamic simulation of various types of
adaptive trusses. The geometrical relation is given in a universal form applicable to all planar and spatial trusses.
We develop descriptions of dynamic behavior of various types of functional truss members and give a general form
of the descriptions. The equation of motion is formulated based on the geometrical relation and the description
of member characteristics. Dynamics simulation procedure based on the Newmark β method is also developed.
Dynamic behaviors of several types of adaptive trusses are simulated. The feasibility of the proposed dynamics
calculation is confirmed; some characteristic dynamic behaviors of adaptive trusses are demonstrated.

Keywords: adaptive truss, variable geometry truss, dynamics, simulation, wire, spring-dashpot, shape memory
alloy

1. Introduction

An adaptive truss is a truss structural system equipped with a number of functional truss members, such as length-
adjustable members, shape memory alloy (SMA) members, spring-dashpot members, and so on. It is a typical
example of so-called adaptive structure, which is a structural system that has the ability to exhibit geometrical or
mechanical adaptability (Wada et al., 1990).

One of such examples is a variable geometry truss (VGT) consisting of a number of length-adjustable actuated
members (Miura et al., 1985). Adjusting its actuated truss member lengths, it can change its geometry as well
as its mechanical characteristics. This type of mechanical system is expected to be a useful instrument for space
missions, such as a space crane (Ramesh et al., 1990), a robotic manipulator (Hughes et al., 1991), a docking mech-
anism (Senda et al., 1995), a momentum management mechanism (Hanahara & Tada, 2002), and other promising
applications.

A conventional type of VGT or adaptive truss is consisting of length-adjustable members accommodated with
a telescopic type actuator and their truss topology is statically determinate (Tanaka et al., 1991). Other types
of adaptive trusses are, however, also possible. A truss having length-adjustable wire members is one example
(Hanahara & Tada, 2000; Hanahara & Tada, 2004; Hanahara et al., 2006). Owing to the lack of compressive
rigidity of a wire truss member, this type of truss has to have a statically indeterminate topology; however, wire
member actuators are expected to be of large stroke and light-weight.

An adaptive truss having SMA wire members is also possible (Hanahara & Tada, 2008; Hanahara & Tada, 2014).
Dos Santos et al. (2015) refers to this type of mechanical system as an adaptive shape-morphing tensegrity struc-
ture. SMA wire has the striking capability to change its length by itself by Joule heating (Lagoudas, 2008); that is,
actuation mechanisms are not necessary for this type of adaptive truss.

In the current study, we deal with dynamic simulation of these various types of adaptive trusses. Seguchi et al.
(1990) have reported dynamic simulation of truss-type robot arm consisting of ordinary rigid length-adjustable
truss members. In order to deal with wire truss members, however, we have to take into account the conspicuous
characteristics of wire that it does not have any compressive stiffness. In order to deal with SMA truss members,
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we have to take into account its nonlinear and hysteretic characteristics. We formulate the equation of motion in
general form, that takes into account all of these situations. In addition to ordinary rigid length-adjustable members,
spring-dashpot members, wire members, and SMA members are dealt with in this study. Dynamic calculation
procedure based on the Newmark β method (Newmark, 1959) is also proposed.

A number of example dynamic simulations of various types of adaptive trusses are conducted. The feasibility of
the proposed dynamics calculation is confirmed; influence of the mechanical characteristics of truss members on
the dynamic behavior of the adaptive truss system are also demonstrated.

2. Truss Structure System Dealt with in This Study

We give a brief introduction of adaptive trusses. The geometrical relation between the member lengths and the
nodal positions in general form is also introduced.

2.1 Variable Geometry Truss, Adaptive Truss, Smart Truss

Truss is a simple structural system conceptually consisting only of truss members and truss nodes. Implementing
functional truss members, it can exhibit various types of mechanical and geometrical characteristics. A typical
example is the VGT, the variable geometry truss (Miura et al., 1985), that has the ability to change its geometry
by means of the length-adjustable truss members. This type of mechanical system is also referred to as an adaptive
truss (Chen & Wada, 1993). Tanaka et al. (1991) give its kinematical relation taking into account the practical
considerations of nodal offset. Yang et al. (2005) report a smart truss that adopts truss members equipped with
piezoelectric elements, aiming to suppress the structural vibration. The authors have reported adaptive trusses
consisting of length-adjustable wire members (Hanahara & Tada, 2004; Hanahara et al., 2006) and SMA wire
members (Hanahara & Tada, 2008; Hanahara & Tada, 2014). In contrast to the conventional VGT, these adaptive
trusses with wire members must have a statically indeterminate topology.

2.2 Kinematics — Geometrical Relation

We deal with adaptive truss structures having the ability to change its geometry as well as its mechanical charac-
teristics. This type of mechanical system is considered to be a kind of parallel robot (Merlet, 2006) or a variant
of so-called platform (Stewart, 1965-66; Dunlop & Garcia, 2002) as well. The kinematical relation is formulated
based on the geometrical relation.

For a truss structural system, the basic geometrical relation is expressed in terms of the distance between two
nodes corresponding to the length of the member connecting them. In the case that the ith member connects the
two nodes, α(i) and β(i), its length li is corresponding to the distance between the two nodal positions xα(i) and
xβ(i). This geometrical relation is expressed as

li =
[
(xα(i) − xβ(i))T (xα(i) − xβ(i))

](1/2)
(1)

On the basis of Equation (1), we obtain the following expression in vector form:

l = f (X) (2)

where l = [l1, · · · , lM]T is the total member lengths vector and X = [xT
1 , · · · , xT

N]T is the total nodal positions
vector. The total differential of Equation (2) is expressed as

dl =
∂l
∂X

dX (3)

The Jacobian matrix is given as

∂l
∂X
=

[
∂li
∂xn

]
(i = 1, · · · ,M, n = 1, · · · ,N) (4)

where

∂li
∂xn
=


1
li

(xα(i) − xβ(i))T (n = α(i))

1
li

(xβ(i) − xα(i))T (n = β(i))

0 (other)

(5)
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(a1) Ordinary member (a2) Telescopic cylinder
(a) Rigid member

(b) Spring-dashpot member (c) Wire member

Figure 1. Conceptual illustration of various types of truss members

These geometrical relations are crucial to deal with the kinematics and dynamics of VGTs or adaptive trusses. In
the case of dealing with the inverse kinematics, Equation (3) is solved for dl under some adequate conditions. It
should be noted that the above formulation is independent of the dimension of space.

3. Models of Truss Member Behavior

Mechanical behaviors of truss members of various types are taken into consideration. A formulation in general
form is also developed.

3.1 Rigid Member

This is a simple ordinary truss member as shown in Figure 1(a1). It can also be of length-adjustable telescopic
cylinder as shown in Figure 1(a2), in the case of the statically determinate VGT. The mechanical behavior of ith
truss member of this type can be expressed as

pi = ki(ri + li − ρi) = kiri + ki(li − ρi) = kiri + qi (6)

where pi is the axial force, ri is the relative elastic deformation, li is the reference length, ρi is the neutral length
corresponding to zero axial force, and ki is the axial stiffness. The offset axial force qi, where qi = ki(li − ρi) in
the above equation, is introduced for generality and for the compatibility with the following formulations of other
types of truss members. A conventional model of the stiffness is given as

ki = EiAi/ρi (7)

where Ei is the Young’s modulus and Ai is the cross-sectional area. In the case of an ordinary non-actuated truss
member, Equation (6) is reduced to

pi = kiri (8)

by putting li = ρi.

3.2 Spring-Dashpot Member

Truss members of this type can be applicable in order to improve the oscillation damping capability. A conceptual
illustration of spring-dashpot member is shown in Figure 1(b). The mechanical behavior in this case is expressed
as

pi = kiri + ciḣi + qi (9)
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where ci is the damping coefficient, hi = li + ri is the total length and qi is the offset axial force corresponding to
the current reference length li. In the typical case that the spring is linearly elastic and the adopted li is fixed to its
corresponding neutral position, Equation (9) is reduced to

pi = kiri + ciṙi (10)

In the case of taking account of nonlinearity of the spring and the dashpot, the parameters in Equation (9), ki, ci,
and qi, become functions of the reference length li, which should be accordingly updated.

3.3 Wire/Cable Member

In the case of truss structure system of statically indeterminate topology, wire or cable truss members can be
applicable. Truss members of this type are light-weight and to be expected to have large stroke by means of
winding and unwinding from the viewpoint of length-adjustability; they cannot take, however, any compressive
force. A conceptual illustration is given in Figure 1(c).

The mechanical behavior is expressed similarly to Equation (6); however, since a wire does not have any compres-
sive stiffness, the mechanical behavior in this case is expressed as

pi =

{
kiri + qi (ri + li ≥ ρi)
0 (ki = qi = 0) (ri + li < ρi)

(11)

The equation can also be reduced to

pi =

{
kiri (ri ≥ 0)
0 (ki = 0) (ri < 0) (12)

in the case of li = ρi.

3.4 SMA Member

Adopting shape memory alloy (SMA) truss members, a truss structure is expected to have the ability of geometry
adaptation by means of the shape memory effect, as well as the capability of vibration energy dissipation by means
of the hysteretic mechanical characteristic. An illustrative mechanical behavior and its typical piecewise linear
model of SMA are shown in Figure 2. As shown in these figures, the stress-strain relation of SMA is highly
nonlinear and the material stiffness significantly depends on the direction of deformation progression especially in
a case such as the piecewise linear model shown in Figure 2(b). Taking the characteristics into consideration, we
express the Young’s modulus of SMA member i in the following form as:

Ei = Ei(ϵi, σi, sgn(ϵ̇i),Ti) (13)

where σi and ϵi are the stress and strain and sgn(ϵ̇i) is adopted to take account of the deformation progressing
direction. Material temperature Ti determines the overall characteristics of the SMA truss member. Strain ϵi and
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Figure 2. Mechanical characteristic of shape memory alloy
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stress σi denote the current material state of the ith member under the temperature condition of Ti in this model.
On the basis of the corresponding reference length li, strain ϵi is expressed as

ϵi = (li − li)/li (14)

where li denotes the natural length of SMA member corresponding to zero strain. The mechanical behavior of
SMA truss member is then expressed as

pi = kiri + qi (15)

where ki = EiAi/li and qi = σiAi. In the calculation process of the behavior of SMA truss member, reference length
li as well as the corresponding strain ϵi, and stress σi are updated in accordance with the changing material state;
Young’s modulus Ei, member stiffness ki and axial force offset qi are updated accordingly as well.

In the case that SMA member i is a wire, Equation (15) is rewritten in the same form as Equation (11) as

pi =

{
kiri + qi (ri + li ≥ ρi)
0 (ki = qi = 0) (ri + li < ρi)

(16)

where ρi denotes the current neutral length corresponding to zero axial force without slack. It should be noted that
this ρi is not constant in general even in the case of constant li, since there can be a residual deformation under zero
axial force in the case that the SMA member is in the martensitic phase.

3.5 Model in General Form

On the basis of the above consideration, we adopt the following model of mechanical behavior of truss members
in general form:

pi = kiri + ciḣi + qi (17)

where ki, ci and qi are not always constant and expressed as the function of reference length li and other various
state quantities Si of truss member i, that is

ki = ki(li,Si), ci = ci(li,Si), qi = qi(li,Si) (18)

The parameters included in Si depend on the type of truss member i as well as the details of the adopted mechanical
model. The condition expressed as Equation (11) or Equation(16) should also be taken into consideration in the
case of a wire member.

4. Equation of Motion

We denote the position of the nth node of the truss system taking into account the deformation as dn, where dn is a
2D or 3D vector corresponding to planer or spatial truss structure. The total nodal positions vector taking account
of the deformation is expressed as D = [dT

1 , · · · , dT
N]T , where N is the number of truss nodes. The total vectors

corresponding to member lengths are expressed as l = [l1, · · · , lM]T , r = [r1, · · · , rM]T , h = [h1, · · · , hM]T , and so
on; the total member axial force vector is similarly expressed as p = [p1, · · · , pM]T . On the basis of the Jacobian
matrix between the geometrical member lengths and the nodal positions J = ∂h/∂D, which can be obtained as in
2.2, the equation of motion of truss structure system is expressed as

M D̈ = F − JT p (19)

where M is the nodal inertia matrix and F is the external nodal force vector. The term of nodal force due to the
member force, JT p, is based on the standard approach dealt with in the field of robotics (Craig, 1989) and the
minus sign represents that the tensile member force pi is positive in the contracting direction.

Substituting Equation (17) into Equation (19) in terms of matrices and vectors, we obtain

M D̈ = F − JT (Kr r + Ch ḣ + q) (20)

where Kr = diag[k1, · · · , kM], Ch = diag[c1, · · · , cM], and q = [q1, · · · , qM]T . Since the member lengths velocity
is linearly related to the nodal velocity as ḣ = J Ḋ, Equation (20) is rewritten as follows:

M D̈ + CḊ + JT Kr( f (D) − l) = F − JT q (21)

where
C = JT Ch J (22)
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is the nodal damping matrix and the relative elastic deformation is expressed in terms of the nodal positions,
referring to the geometrical relation (2), as

r = f (D) − l (23)

Equation (21) is the equation of motion of adaptive truss structure system in general form dealt with in the current
study.

Consider the case that the truss structure system consists only of ordinary non-actuated members as well as spring-
dashpot members of small stroke. We take the reference lengths to the neutral; that is l = ρ = f (X), where X is
the initial constant neutral non-deformed nodal positions. This leads to q = 0. The nodal displacements vector is
expressed as U = D − X and the member deformation can be linearly related as r = f (D) − l = JU in this case.
The equation of motion (21) is then reduced to the following conventional form as

MÜ + CU̇ + KU = F (24)

where
K = JT Kr J (25)

is the nodal stiffness matrix. In this case, the matrices M, C, and K are assumed to be constant.

5. Dynamic Calculation

The dynamic simulation based on the equation of motion formulated in the previous section is performed by
means of a numerical integration. Calculation of Equation (21) based on the Newmark βmethod (Newmark, 1959)
is formulated and a numerical simulation procedure taking into account the conditions of various truss members is
developed.

5.1 Discretization by Means of Newmark βMethod

The nodal positions vector is discretized by means of the Newmark β method as

D(n+1) = D(n) + ∆t Ḋ(n)
+
∆t2

2

{
(1 − 2β)D̈(n)

+ 2βD̈(n+1)} (26)

Ḋ(n+1)
= Ḋ(n)

+ ∆t
{
(1 − γ)D̈(n)

+ γ D̈(n+1)} (27)

where n is the step number and ∆t is the integration time step. On the basis of the Taylor expansion of first order
of the geometrical relation between the member lengths and the nodal positions, Equation (26) gives the following
equation:

f (D(n+1)) = f (D(n)) + J
[
∆t Ḋ(n)

+
∆t2

2

{
(1 − 2β)D̈(n)

+ 2βD̈(n+1)}] (28)

Substituting Eqs.(27) and (28) into the equation of motion (21) for the (n + 1)th step, we obtain

M D̈(n+1)
+ C

[
Ḋ(n)
+ ∆t

{
(1 − γ)D̈(n)

+ γ D̈(n+1)}]
+JT Kr

[
f (D(n)) + J

[
∆t Ḋ(n)

+
∆t2

2

{
(1 − 2β)D̈(n)

+ 2βD̈(n+1)}] − l
]
= F − JT q (29)

Paying attention to D̈(n+1), this equation is rearranged as(
M + γ∆tC + β∆t2 JT Kr J

)
D̈(n+1)

= F − JT
{
q + Kr

(
f (D(n)) − l

)}
−

(
C + ∆tJT Kr J

)
Ḋ(n)

−
{

(1 − γ)∆tC +
1 − 2β

2
∆t2 JT Kr J

}
D̈(n) (30)

Using the expression of nodal stiffness matrix Equation (25), the above equation is rewritten as follows:(
M + γ∆tC + β∆t2K

)
D̈(n+1)

= F − JT
{
q + Kr

(
f (D(n)) − l

)}
− (C + ∆tK) Ḋ(n)

−
{

(1 − γ)∆tC +
1 − 2β

2
∆t2K

}
D̈(n) (31)

This equation can be represented in the following form as

M̂ D̈(n+1)
= F̂ (32)
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where

M̂ = M + γ∆tC + β∆t2K (33)

F̂ = F − JT
{
q + Kr

(
f (D(n)) − l

)}
− (C + ∆tK) Ḋ(n) −

{
(1 − γ)∆tC +

1 − 2β
2
∆t2K

}
D̈(n) (34)

5.2 Numerical Integration

We consider the typical situation where the truss structural system has several nodes fixed on a basement. The
motion of the basement nodes and the external force on the other nodes are assumed to be given.

Nodal positions vector D can be represented as D = [DT
U , D

T
C]T , where DU and DC correspond to the unconfined or

free nodal elements and the confined or basement nodal elements, respectively. On the basis of this representation,
Equation (32) can be rewritten as

M̂UU D̈(n+1)
U + M̂UC D̈(n+1)

C = F̂U (35)

M̂CU D̈(n+1)
U + M̂CC D̈(n+1)

C = F̂C (36)

where the subscripts U and C represent the parts of elements corresponding to DU and DC , respectively. Since the
external nodal force FU(t) is assumed to be given, F̂U is calculated in terms of the corresponding part of Equation
(34). The motion of the basement nodes DC(t) is also assumed to be given. Hence, Equation (35) is solved for
D̈(n+1)

U as
D̈(n+1)

U = M̂−1
UU

(
F̂U − M̂UC D̈(n+1)

C

)
(37)

On the basis of the obtained nodal acceleration at the (n + 1)th step, D̈(n+1)
= [(D̈(n+1)

U )T , (D̈(n+1)
C )T ]T , the nodal

position and velocity vectors at the (n+ 1)th step are calculated with Eqs.(26) and (27). The force on the basement
nodes FC can be obtained based on Equation (34), in terms of F̂C calculated with Equation (36).

5.3 Procedure for Numerical Simulation

Since we deal with adaptive truss structures having geometrical and mechanical adaptability in this study, all of
the matrices and vectors are not constant in general. In particular, the elements of member stiffness Kr can change
drastically in the case of wire members and can depend on the deformation progressing directions in the case of
SMA members. The following procedure is developed in order to cope with this situation:

[0] Set an adequate value to time step ∆t. The step number is n = 0. Reference lengths l is determined so that
r = 0.

[1] Update matrices M, Ch, Kr and J and vector q. It should be noted that member stiffness Kr can be affected
by the direction of deformation progression as expressed in Equation (13).

[2] Calculate the nodal damping and stiffness matrices, C and K, in terms of Eqs.(22) and (25).

[3] Calculate M̂ and F̂ in terms of Eqs.(33) and (34). Calculate Equation (37) and obtain nodal acceleration
D̈(n+1), nodal velocity Ḋ(n+1) in terms of Equation (27), and nodal positions D(n+1) in terms of Equation (26).

[4] Calculate Equation (23) as r = f (D(n+1)) − l. Evaluate the signs of elements of r corresponding to SMA
members, that is the deformation progressing direction to be referred in [1].

[5] Update the reference lengths as l ← l + r and reset the obtained deformation r ← 0. Update the state of
SMA members and the relevant variables in accordance with the deformation.

[6] Set n← n + 1 and continue from [1] until the end of simulation process.

The successive modification of reference length l is adopted in order to deal with the nonlinearity of the system. In
the above procedure, r obtained in [4] denotes the member deformation progression within a single time step. The
time step ∆t applied for the numerical simulation process should be significantly small compared to the case of the
ordinary truss structure, in order to reduce the discretization error due to the drastic change in stiffness of wire and
SMA members.
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6. Example Dynamic Simulation Results

In order to demonstrate the feasibility of the proposed dynamics calculation of adaptive truss, we conduct two types
of simulations: dynamic behaviors of geometry adaptation motion and dynamic responses to basement motion.

6.1 Initial Static Equilibrium Condition

In the current simulation studies, the truss systems to be simulated are assumed to be in static equilibrium con-
dition at the initial point. We have to calculate this static equilibrium condition prior to the dynamic simulation
calculation, in such a case that an external nodal force or non-zero axial forces of truss members have to be taken
into consideration at the initial state. In order to determine the initial condition of dynamic simulation, we conduct
the following kinematic simulation assuming quasi-static motion.

Ignoring the dynamic terms in Equation (20), we obtain the following static equilibrium equation:

JT Kr r = F − JT q (38)

Owing to the quasi-static assumption, the deformation r is assumed to be small enough; on the basis of the linear
relation r = JU with the nodal displacement U, we obtain

KU = F − JT q (39)

where the nodal stiffness K is given as Equation (25). In order to calculate the static equilibrium condition corre-
sponding to the assumed situation, the following process is iteratively performed in a quasi-static manner from an
appropriate equilibrium state:

• Solve Equation (39) for U under the constraint of fixed basement nodes.

• Calculate r = JU.

• Update l ← l + r and D← D + U.

• Update J, Kr, K, F, ρ and q accordingly.

6.2 Geometry Adaptation Motion

An adaptive truss has geometry adaptation capability in the case that it has a number of length-adjustable truss
members. Figure 3 shows such examples of geometry adaptation motion. Figure 3(a) shows an example motion of
a conventional VGT having a statically determinate topology and rigid telescopic-type actuators. In the case that
the length-adjustable members are wires to be wound and unwound for actuation, an adaptive truss has to have a
statically indeterminate topology as shown in Figure 3(b), since the wires cannot take any compressive force.

(a1) Initial posture (a2) Final posture (b1) Initial posture (b2) Final posture
xN = [0.0, 0.0, 4.5](m) xN = [−1.0, 0.0, 4.3](m) xN = [0.0, 0.0, 4.5](m) xN = [−1.0, 0.0, 4.3](m)

(a) With rigid actuators (b) With wire actuators
(statically determinate configuration) (statically indeterminate configuration)

Figure 3. Example geometry adaptation motion: configurations and postures
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In this simulation study, the geometry adaptation motion is determined in an incremental manner. We denote the
member lengths increment as ∆l = [∆lT

A ,∆lT
F]T , where ∆lA corresponds to the actuated members and ∆lF = 0

corresponds to the fixed-length non-actuated members. The actuating increment ∆lA is determined based on the
specified increment ∆xN of the nodal position at the peripheral end, as the solution of the following minimization
problem:

Minimize g = g(∆X) with respect to ∆X subject to


∂lF

∂X
∆X = BF

∂l
∂X
∆X = 0

∆XC = BC∆X = 0

∆xN = BN∆X = ∆xN

(40)

where the constraints are the constant lengths of non-actuated members and the fixed position of the basement
nodes, in addition to the specified increment of the nodal position at the peripheral end. The Jacobian matrix
∂l/∂X is given in section 2.2 and BF , BB and BN are the boolean matrices corresponding to the constraints. In
the current study, the introduced objective function g intends to suppress the magnitude of increment of actuation
motion and is expressed as

g(∆X) =
1
2

(∆lA)T∆lA =
1
2

(
BA
∂l
∂X
∆X

)T

BA
∂l
∂X
∆X = ∆XT

( ∂l
∂X

)T

BT
A BA

∂l
∂X

∆X (41)

where BA is the corresponding boolean matrix. Problem (40) can be solved by means of a generalized inverse (Rao
& Mitra, 1971) of the Jacobian matrix.

The specification of the adaptive trusses adopted in this simulation is assumed to be as follows:

• The material of the truss members is aluminum.

• The cross-section of the non-actuated truss members is 50mm2.

• The cross-section of the length-adjustable members is 1mm2. This is common to both rigid telescopic mem-
bers and wire members.

• A mass of 10kg is attached to the peripheral end node.

It should be noted that a rigid telescopic length-adjustable actuator of 1mm2 cross-section is unrealistic; however,
it is adopted in this simulation study in order to compare the dynamic behaviors of adaptive trusses that consisting
only of rigid members and that having wire members which cannot take any compressive force.

Figures 3(a1) and 3(b1) are the initial postures corresponding to the position of the peripheral end node xN =

[0.0, 0.0, 4.5]T (m). The intermediate nodal positions at the height of 1m and 3m are twisted 10 degrees in order
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Figure 4. Dynamic behavior of peripheral end node based on geometry adaptation motion
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(a) Spring-dashpot (b) SMA-wire

Figure 5. Adaptive trusses for basement vibration simulations

to avoid the singularity of the Jacobian matrix for the geometry adaptation motion. Figures 3(a2) and 3(b2) are
the final postures corresponding the target position of the peripheral end node xN = [−1.0, 0.0, 4.3]T (m), that is,
displaced 1m leftward and 0.2m downward, respectively. The two postures are different due to the difference in the
kinematic condition such as the topology.

Figure 4 shows the simulated dynamic behaviors of the peripheral end nodes in horizontal direction, corresponding
to the motion of the adaptive trusses attaining the final postures shown in Figures 3(a2) and 3(b2) from the initial
postures shown in Figures 3(a1) and 3(b1) in 10s. The time step ∆t of numerical integration is 10µs. This extremely
short time step is adopted to deal with the drastic change in stiffness of the wire members. In these graphs, ‘rigid’
indicates the behavior of the adaptive truss consisting of rigid telescopic actuators and ‘no slack’ and ‘slack’
indicate those of the adaptive truss with wire actuators, where ‘slack’ signifies that the wires are loosened 1mm
from the lengths determined by the motion planning. On the basis of the result shown in Figure 4(a), the influence of
the loosening is significant. The magnified residual vibration shown in Figure 4(b) demonstrates that the vibration
is apparently sinusoidal for ‘rigid’ but is clearly different for ‘no slack’. This difference indicates a significant
influence of the the mechanical characteristics of wires of zero compressive stiffness, even in the case of no slack
condition.

6.3 Basement Motion

An adaptive truss can have various dynamic capabilities by installing different types of truss members. We conduct
dynamic simulations in order to examine dynamic responses of such adaptive trusses to basement motions. Figure
5 shows the configurations of adaptive trusses adopted in the simulations. Figure 5(a) is a statically determinate
adaptive truss having spring-dashpot mechanisms as its diagonal truss members. Figure 5(b) is a statically inde-
terminate adaptive truss. This adaptive truss is assumed to have ordinary wires or SMA wires as its diagonal truss
members. The specification of the adaptive trusses adopted in this simulation is given as follows referring to the
specification in the previous simulations:

• The material of the vertical and horizontal truss members is alminum. The cross-section of these truss mem-
bers is 50mm2.

• A mass of 10kg is attached to the peripheral end node.

• As the ordinary wire members, alminum wires of 1mm2 cross-section are adopted.

• For the spring-dashpot members, a stiffness coefficient of 70kN/m and a damping coefficient of 50Ns/m are
adopted.

• The SMA wires are assumed to be of NiTi alloy having the piecewise linear characteristics shown in Figure
2(b) and of 1mm2 cross-section. All these SMA wires are in austenite phase in this study; that is, they exhibit
pseudo-elasticity. Two type of values are adopted for the initial strain: 0% and 3%.
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The two basement motions adopted in the simulations are shown in Figure 6. The oscillatory motion shown in
Figure 6(a) is of 1Hz frequency, 0.1m magnitude and 10s duration. The single-shot motion shown in Figure 6(b)
is of 0.1m magnitude and 0.1s duration. Figures 7 and 8 show the resultant responses of adaptive trusses in terms
of the simulated horizontal motions of the peripheral end node. Figures 7 and 8 respectively correspond to the
oscillatory basement motion shown in Figure 6(a) and the single-shot basement motion shown in Figure 6(b).

As shown in Figure 7(a), an attenuation of residual vibration is demonstrated in the case of the adaptive truss having
spring-dashpot members. On the basis of the adaptive truss having SMA wires, we have obtained significantly
different responses between the cases of initial strain values 0% and 3% of SMA wires as shown in Figure 7(b). In
the case of 0% initial strain, the truss cannot take advantage of the hysteretic characteristic of the SMA members,
since the stress and strain of the SMA wires are basically in the proportional linear part of the assumed piecewise
linear characteristics of SMA shown in Figure 2(b). In the case of 3% initial strain of SMA wires, it is demonstrated
that the residual vibration is rapidly reduced to less than a third. In contrast to the case of spring-dashpot members,
however, the reduction of the residual vibration remains at a certain level in this case. This is because the piecewise
linear model shown in Figure 2(b) does not take into account the minor hysteresis loop of the actual shape memory
alloy.

In the case of the single-shot basement motion shown in Figure 6(b), we can see a conspicuous difference between
the responses of the cases of ordinary wires and spring-dashpot members shown in Figure 8(a), and the responses
of the case of SMA wire members shown in Figure 8(b). The responses shown in Figure 8(a) demonstrate the
decrease of vibration by means of the spring-dashpot members in 2s. The magnitude of vibration shown in Figure
8(b) is significantly smaller than the case shown in Figure 8(a). This is mostly due to the relatively flat or low-
stiffness part of the stress-strain relation of the SMA characteristics shown in Figure 2(b). This effect of vibration
alleviation can also be confirmed based on the comparison of the two cases shown in Figure 8(b); the adaptive truss
of SMA wires with 3% initial strain takes more advantage of this SMA characteristic.

7. Concluding Remarks

An adaptive truss structure system is expected to be able to perform various functions in accordance with the
types of truss members installed. In the current study, we have dealt with the dynamic simulation of adaptive truss
consisting of truss members of different mechanical properties.

Models of mechanical behaviors of ordinary rigid member, spring-dashpot member and SMA member were con-
sidered; they can also be of wire that cannot take any compressive axial force. A model in general form is given;
other types of truss members can be dealt with based on the formulation. The geometrical relation and the equation
of motion of adaptive truss have been formulated in general form. A dynamic simulation method that can take into
account the basement vibration was developed based on the Newmark β numerical integration approach.

Feasibility of the proposed dynamic simulation approach has been demonstrated with a number of calculation
examples. The obtained results show the characteristic behaviors of the adopted functional truss members. It has
been also shown that the adaptive truss having SMA wire members is expected to have some promising dynamic
capabilities, although the current characteristic model of SMA is simply piecewise linear.

On the basis of the developed dynamic simulation, we can now design an adaptive truss having some intended
dynamic characteristics that consists of various types of functional truss members. This is possibly our future
work.
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